Indefinite and Definite Integrals Past Year Solved Questions
Indefinite and Definite Integrals Past Year Solved Questions: In this article you will get to Online test for JEE Main, JEE Advanced, UPSEE, WBJEE and other engineering entrance examinations that will help the students in their preparation. These tests are free of cost and will useful in performance and inculcating knowledge. In this post we are providing you Indefinite and Definite Integrals Past Year Solved Questions for IIT JEE & Engineering Exam.
Indefinite and Definite Integrals Past Year Solved Questions
Q1. ∫[x5 / √(1 + x3)] dx = ________.
Put 1 + x3 = t2 ⇒ 3x2 dx = 2tdt and x3 = t2 − 1 So, ∫[x5 / √(1 + x3)] dx = ∫{[x2 * x3] / √(1 + x3)} dx = [2 / 3] ∫{[(t2 − 1) * t] dt / [t]} = [2 / 3] ∫(t2 − 1) dt = [2 / 3] [(t3 / 3) − t] + c = [2 / 3] [{(1 + x3)3/2 / 3} − {(1 + x3)½}]+ c
Q2. ∫x / [1 + x4] dx = ________.
Put t = x2 ⇒ dt = 2x dx, therefore, ∫x / [1 + x4] dx = [1 / 2] ∫1 / [1 + t2] dt = [1 / 2] tan−1 t + c = [1 / 2] tan−1 x2 + c
Q3. ∫√(1 + sin [x / 2]) dx = _________.
∫√(1 + sin [x / 2]) dx = ∫√(sin2 [x / 4] + cos2 [x / 4] + 2 sin [x / 4] cos [x / 4]) dx = ∫(sin [x / 4] + cos [x / 4]) dx = 4 (sin [x / 4] – cos [x / 4]) + c
Q4. ∫[sinx] / [sin (x − α)] dx = ________
∫[sinx] / [sin (x − α)] dx = ∫[sin (x − α + α)] / [sin (x − α)] dx = ∫{[(sin (x − α) cosα + cos (x − α) sinα] / [sin (x − α)]} dx = ∫cosα dx +∫sinα * cot (x − α) dx = x cosα + sinα * log sin (x − α) + c
Q5. ∫[1 + x2] / √[1 − x2] dx = ________.
Put x = sinθ ⇒ dx = cosθ dθ, then it reduces to ∫(1 + sin2θ) dθ = θ + [1 / 2]∫(1 − cos2θ) dθ = [3θ / 2] − [1 / 2] sinθ * √[1 − sin2θ] + c = [3 / 2] sin−1 x − [1 / 2]x √[1 − x2] + c
Q6. ∫(log x)2 dx = _______.
∫(log x)2 dx Put log x = t ⇒ et = x ⇒ dx = et dt, then it reduces to ∫t2 * et dt = t2 * et − 2t * et + 2et + c = x (log x)2 − 2x log x + 2x + c
Q7. ∫x2dx / (a + bx)2 = ___________.
Put a + bx = t ⇒ x = [t − a] / [b] and dx = dt / [b] I =∫([t − a] / b)2 * [1 / t2] * [dt / b] = [1 / b2]∫(1 − (2a / t) + [a2 * t−2]) dt = [1 / b2] * [(t − 2a log t) − (a2 / t)] = [1 / b2] [(x + a / b) − [2a / b] * log (a + bx) − [a2 / b] * [1 / (a + bx)]
Q8. ∫x cos2x dx = ______.
x cos2x dx = [1 / 2] ∫x (1 + cos2x) dx = [x2 / 4] + [1 / 2] [(x sin2x) / (2) −∫(sin2x / 2) dx] + c = [x2 / 4] + (x sin2x / 4) + (cos2x / 8) + c
Q9. ∫{[sin8x − cos8x] / [1 − 2 sin2x cos2x]} dx = _________.
∫{[sin8x − cos8x] / [1 − 2 sin2x cos2x]} dx = ∫{[(sin4x + cos4x) * (sin4x − cos4x)] / [(sin2x + cos2x)2 − 2 sin2x cos2x]} dx = ∫(sin4x – cos4x) dx = ∫[sin2x + cos2x] * [sin2x – cos2x] dx = ∫(sin2x + cos2x) dx = ∫−cos2xdx = [−sin2x / 2] + c
Q10. ∫tan32x sec2x dx = __________.
∫tan32x sec2x dx = ∫[(sec2 2x − 1) sec2x * tan2x] dx =∫sec32x tan2x dx −∫sec2x tan2x dx ……. (i) Now, we take ∫sec32x tan2x dx Put sec 2x = t ⇒ sec 2x tan 2x = dt/2, then it reduces to [1 / 2] ∫t2 dt = t3 / 6 = [sec32x] / [6] From (i), ∫sec32x tan2x dx −∫sec2x tan2x dx = [sec3 2x / 6] − [sec2x / 2] + c Trick: Let sec 2x = t, then sec 2x tan 2x dx = [1 / 2] dt [1 / 2] ∫(t2 − 1) dt = [1 / 6]t3 − [1 / 2]t + c = [sec3 2x / 6] − [sec 2x / 2] + c
Subject-wise Tricks Tips & Question with Solution PDFs
S.NO | Subject Name | Topic-wise PDFs Download Link |
1. | Chemistry Notes PDF | Click Here to Download Now |
2. | Maths Notes PDF | Click Here to Download Now |
3. | Physics Notes PDF | Click Here to Download Now |
4. | Biology Notes PDF | Click Here to Download Now |
Syllabus and Previous Year Papers |
|
Chemistry Syllabus for NEET & AIIMS Exams | Click Here |
Chemistry Syllabus for JEE Mains & Advanced | Click Here |
Chapter Wise NEET Chemistry Syllabus | Click Here |
Physics Syllabus for NEET & AIIMS Exams | Click Here |
Physics Syllabus for JEE Mains & Advanced | Click Here |
Chapter Wise NEET Physics Syllabus | Click Here |
Biology Syllabus for NEET & AIIMS Exams | Click Here |
Chapter Wise NEET Biology Syllabus | Click Here |
Maths Syllabus for JEE Mains & Advanced | Click Here |
Download NEET Previous Year Question Papers with Solution | Click Here |
|
|
https://www.facebook.com/ExamsRoadOfficial | |
Telegram | https://telegram.me/ExamsRoad |
https://twitter.com/ExamsRoad | |
https://www.instagram.com/ExamsRoad/ | |
YouTube | Click Here To Subscribe Now |
Thank You.
By TEAM ExamsRoad.com