Indefinite and Definite Integrals Past Year Solved Questions for IIT JEE & Engineering Exam

0

Indefinite and Definite Integrals Past Year Solved Questions

Indefinite and Definite Integrals Past Year Solved Questions: In this article you will get to Online test for JEE Main, JEE Advanced, UPSEE, WBJEE and other engineering entrance examinations that will help the students in their preparation. These tests are free of cost and will useful in performance and inculcating knowledge. In this post we are providing you Indefinite and Definite Integrals Past Year Solved Questions for IIT JEE & Engineering Exam.

Indefinite and Definite Integrals Past Year Solved Questions

 

Q1. ∫[x5 / √(1 + x3)] dx = ________.

View Answer

Put 1 + x= t2

⇒ 3xdx = 2tdt and x= t2 − 1

So, ∫[x5 / √(1 + x3)] dx = ∫{[x2 * x3] / √(1 + x3)} dx

= [2 / 3] ∫{[(t− 1) * t] dt / [t]}

= [2 / 3] ∫(t− 1) dt

= [2 / 3] [(t3 / 3) − t] + c

= [2 / 3] [{(1 + x3)3/2 / 3} − {(1 + x3)½}]+ c

Q2. ∫x / [1 + x4] dx = ________.

View Answer

Put t = x2 ⇒ dt = 2x dx, therefore,

∫x / [1 + x4] dx = [1 / 2] ∫1 / [1 + t2] dt

= [1 / 2] tan−1 t + c

= [1 / 2] tan−1 x+ c

Q3. ∫√(1 + sin [x / 2]) dx = _________.

View Answer

∫√(1 + sin [x / 2]) dx = ∫√(sin[x / 4] + cos2 [x / 4] + 2 sin [x / 4] cos [x / 4]) dx

= ∫(sin [x / 4] + cos [x / 4]) dx

= 4 (sin [x / 4] – cos [x / 4]) + c

Q4.  ∫[sinx] / [sin (x − α)] dx = ________

View Answer

∫[sinx] / [sin (x − α)] dx =

∫[sin (x − α + α)] / [sin (x − α)] dx

= ∫{[(sin (x − α) cosα + cos (x − α) sinα] / [sin (x − α)]} dx

= ∫cosα dx +∫sinα * cot (x − α) dx

= x cosα + sinα * log sin (x − α) + c

Q5. ∫[1 + x2] / √[1 − x2] dx = ________.

View Answer

Put x = sinθ ⇒ dx = cosθ dθ, then it reduces to

∫(1 + sin2θ) dθ = θ + [1 / 2]∫(1 − cos2θ) dθ

= [3θ / 2] − [1 / 2] sinθ * √[1 − sin2θ] + c

= [3 / 2] sin−1 x − [1 / 2]x √[1 − x2] + c

Q6. ∫(log x)2 dx = _______.

View Answer

∫(log x)2 dx

Put log x = t

⇒ et = x

⇒ dx = et dt, then it reduces to

∫t2 * et dt = t* e− 2t * e+ 2et + c

= x (log x)− 2x log x + 2x + c

Q7. ∫x2dx / (a + bx)2 = ___________.

View Answer

Put a + bx = t

⇒ x = [t − a] / [b] and dx = dt / [b]

I =∫([t − a] / b)* [1 / t2] * [dt / b]

= [1 / b2]∫(1 − (2a / t) + [a2 * t−2]) dt

= [1 / b2] * [(t − 2a log t) − (a2 / t)]

= [1 / b2] [(x + a / b) − [2a / b] * log (a + bx) − [a2 / b] * [1 / (a + bx)]

Q8. ∫x cos2x dx = ______.

View Answer

x cos2x dx = [1 / 2] ∫x (1 + cos2x) dx

= [x2 / 4] + [1 / 2] [(x sin2x) / (2) −∫(sin2x / 2) dx] + c

= [x2 / 4] + (x sin2x / 4) + (cos2x / 8) + c

Q9. ∫{[sin8x − cos8x] / [1 − 2 sin2x cos2x]} dx = _________.

View Answer

∫{[sin8x − cos8x] / [1 − 2 sin2x cos2x]} dx

= ∫{[(sin4x + cos4x) * (sin4x − cos4x)] / [(sin2x + cos2x)2 − 2 sin2x cos2x]} dx

= ∫(sin4x – cos4x) dx

= ∫[sin2x + cos2x] * [sin2x – cos2x] dx

= ∫(sin2x + cos2x) dx

= ∫−cos2xdx

= [−sin2x / 2] + c

Q10. ∫tan32x sec2x dx = __________.

View Answer

∫tan32x sec2x dx = ∫[(sec2x − 1) sec2x * tan2x] dx

=∫sec32x tan2x dx −∫sec2x tan2x dx ……. (i)

Now, we take ∫sec32x tan2x dx

Put sec 2x = t

⇒ sec 2x tan 2x = dt/2, then it reduces to

[1 / 2] ∫t2 dt = t3 / 6

= [sec32x] / [6]

From (i), ∫sec32x tan2x dx −∫sec2x tan2x dx

= [sec2x / 6] − [sec2x / 2] + c

Trick: Let sec 2x = t, then sec 2x tan 2x dx = [1 / 2] dt

[1 / 2] ∫(t− 1) dt = [1 / 6]t− [1 / 2]t + c

= [sec2x / 6] − [sec 2x / 2] + c

 



Subject-wise Tricks Tips & Question with Solution PDFs

S.NO Subject Name Topic-wise PDFs Download Link
1. Chemistry Notes PDF Click Here to Download Now
2. Maths Notes PDF Click Here to Download Now
3. Physics Notes PDF Click Here to Download Now
4. Biology Notes PDF Click Here to Download Now

 

Syllabus and Previous Year Papers

Chemistry Syllabus for NEET & AIIMS Exams Click Here
Chemistry Syllabus for JEE Mains & Advanced Click Here
Chapter Wise NEET Chemistry Syllabus Click Here
Physics Syllabus for NEET & AIIMS Exams Click Here
Physics Syllabus for JEE Mains & Advanced Click Here
Chapter Wise NEET Physics Syllabus Click Here
Biology Syllabus for NEET & AIIMS Exams Click Here
Chapter Wise NEET Biology Syllabus Click Here
Maths Syllabus for JEE Mains & Advanced Click Here
Download NEET Previous Year Question Papers with Solution Click Here

 

Please Support us Like & Share Our Social Network

Facebook   https://www.facebook.com/ExamsRoadOfficial
Telegram  https://telegram.me/ExamsRoad
Twitter  https://twitter.com/ExamsRoad
Instagram https://www.instagram.com/ExamsRoad/
YouTube  Click Here To Subscribe Now

 

Thank You.

By TEAM ExamsRoad.com

ExamsRoad

LEAVE A REPLY

Please enter your comment!
Please enter your name here