Maths Quiz on Three Dimensional Geometry for IIT JEE & Engineering Exam

0

JEE Maths Quiz on Three Dimensional Geometry

JEE Maths Quiz on Three Dimensional Geometry : In this article you will get to Online test for JEE Main, JEE Advanced, UPSEE, WBJEE and other engineering entrance examinations that will help the students in their preparation. These tests are free of cost and will useful in performance and inculcating knowledge. In this post we are providing you quiz on Three Dimensional Geometry.

Quiz on Three Dimensional Geometry

 

Q1. A line with direction cosines proportional to 2, 1, 2 meets each of the lines x = y + a = z and x + a = 2y = 2z. The coordinates of each of the points of intersection are given by __________.

View Answer

Solution:

Let the two lines be AB and CD having equations

x / 1 = [y + a] / 1 = z / 1 = λ and [x + a] / [2] = y / 1 = z / 1 = μ then

P = (λ, λ − a, λ) and Q = (2μ − a, μ, μ)

So, according to question, [λ − 2μ + a] / [2] = [λ − a − μ] / [1] = [λ − μ] / [2]

μ = a and λ = 3a

Therefore, P = (3a, 2a, 3a) and [(x − 2)2 +(y − 3)+ (z − 4)2].

Q2. The distance of the point (1, 2, 3) from the plane x − y + z = 5 measured parallel to the line x / 2 = y / 3 = z / −6, is __________.
a) 1
b) 2
c) 3
d) 4

View Answer

Solution:

Direction cosines of line = (2 / 7, 3 / 7, −6 / 7)

Now, x′ = 1 + [2r /7], y′ = −2+ [3r / 7] and z′ = 3 − [6r / 7]

Therefore, (1 + [2r / 7]) − (−2 + [3r / 7]) + (3 − [6r / 7])

= 5

⇒ r = 1

Q3. The centre of the sphere passes through four points (0, 0, 0), (0, 2, 0), (1, 0, 0) and (0, 0, 4) is ________.

View Answer

Solution:

Let the equation of sphere be x2 + y2 + z2 + 2ux + 2vy + 2wz + d = 0

Because it passes through origin (0, 0, 0), d = 0 and also, it passes through (0, 2, 0)

4 + 4v = 0 ⇒ v = −1

Also, it passes through (1, 0, 0)

1 + 2u = 0 ⇒ u = − 1/2

And it passes through (0, 0, 4)

16 + 8w ⇒ w = −2

Centre (−u, −v, −w)=(1 / 2, 1, 2)

Q4. Co-ordinate of a point equidistant from the points (0,0,0), (a, 0, 0), (0, b, 0), (0, 0, c) is ___________.

View Answer

Solution:

The required point is the centre of the sphere through the given points.

Let the equation of sphere be x2 + y2 + z2 + 2ux + 2vy + 2wz + d = 0 …..(i)

Sphere (i) is passing through (0, 0, 0), (a, 0, 0), (0, b, 0) and (0, 0, c), hence, d = 0

a+ 2ua = 0 ⇒ u = −a/2

b2 + 2vb = 0 ⇒ v = −b/2

c+ 2wc = 0 ⇒ w = −c/2

Therefore, centre of sphere is (a/2, b/2, c/2), which is also the required point.

Q5. The projection of any line on co-ordinate axes be, respectively 3, 4, 5 then its length is ______.
a) 2√2
b) 4√2
c) 3√2
d) 5√2

View Answer

d) 5√2

Solution:

Let the line segment be AB, then as given AB cos α = 3, AB cos β = 4, AB cos γ = 5

⇒ AB(cos2α + cos2β + cos2γ) = 32 + 42 + 52

AB = √[9 + 16 + 25] = 5√2,

where α, β and γ are the angles made by the line with the axes.



Subject-wise Tricks Tips & Question with Solution PDFs

S.NO Subject Name Topic-wise PDFs Download Link
1. Chemistry Notes PDF Click Here to Download Now
2. Maths Notes PDF Click Here to Download Now
3. Physics Notes PDF Click Here to Download Now
4. Biology Notes PDF Click Here to Download Now

 

Syllabus and Previous Year Papers

Chemistry Syllabus for NEET & AIIMS Exams Click Here
Chemistry Syllabus for JEE Mains & Advanced Click Here
Chapter Wise NEET Chemistry Syllabus Click Here
Physics Syllabus for NEET & AIIMS Exams Click Here
Physics Syllabus for JEE Mains & Advanced Click Here
Chapter Wise NEET Physics Syllabus Click Here
Biology Syllabus for NEET & AIIMS Exams Click Here
Chapter Wise NEET Biology Syllabus Click Here
Maths Syllabus for JEE Mains & Advanced Click Here
Download NEET Previous Year Question Papers with Solution Click Here

 

Please Support us Like & Share Our Social Network

Facebook   https://www.facebook.com/ExamsRoadOfficial
Telegram  https://telegram.me/ExamsRoad
Twitter  https://twitter.com/ExamsRoad
Instagram https://www.instagram.com/ExamsRoad/
YouTube  Click Here To Subscribe Now

 

Thank You.

By TEAM ExamsRoad.com

ExamsRoad

LEAVE A REPLY

Please enter your comment!
Please enter your name here