

Handwritten Notes Hydrogen

HYDROGEN

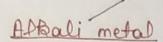
- -> Hyderogen is most abundant element in the universe.
- -> Saturn & Jupiter is full of hydrogen
- -> sun is mostly full of tyderogen. (so tusion exm occusis)
 - "H' + "H' fusion Ho + Eneargy
- -> Electronic configuration of flydrogen = 18'
- -> Atomic no. / mass no. of Rydsingen = 1
- + Reparementation = H!

Insatahone of Hyderogen

Hydungen	No. of bustons	No. of newtonos	Atomic mass	Symbol
Parotium ou Hydarogen-I	1	0	1 1399	14 021 H
Deuterium or Hydrogen-2	7	1	2	7H 001 2H
Taitium oal Hyolologen-3	1	2	3	3H on 3H

- → The mass of these isotopes differ by large amount.

 → Deuterium has double atomic weight than brieflium f muitient tagisen simote addiret sont muitiet
- -> 80, these isotopes differ largely in their physical and chemical peroperty.
 - Reactivity of Hydologen: H-H > H-D



POSITION OF HYDROGEN IN PERIODIC TABLE

- -> Possition of tryderogen in periodic table is not fixed.
- Booz some of its peroperties sessemble with alkali
- metals unhereaux some peroperties resembles with halogen. -> 20 Ryderogen is given a separate space in beriodic table.

- → Same electeronic configuration
- -> Both form x+ ion.

Halogens

- -> Both torke one e-to actieve octet
- -> Both form X, type compound.
- -> Both four X-ion.

PREPARATION OF HYDROGEN

- 1. Laboratory method
- (i) Rxn of metal with mineral acides
- (ii) Rxn of metal with base.
- a. Industrial method
- (i.) Electrolysis of moder
- (i.i.) Electrolypsies of Ba (OH),
- (iii) By Coal gardification

LABORATORY METHOD

- (i) Rxn of metal weith mineral acids:
- -> Metalos above Ho in seactivity oseries selectes Ho god on stien acid.

(ii) Rxn of metal with base -> Amphotesic metal (on, Pb, Zn, Al) on sixn usith base; beloduced Ha Zn (8) + NaOH - Na, Zno, + Ha (9) sodium zincate AD (8) + NOOH ---> NOADO + HO (9) sodium aluminate sodium plumbate &n (8) + NaOH ---> Nag &nog + 43 (8) sodium stannate INDUSTRIAL METHOD (i) Electrolysis of water -) It is causied out using Pt electrode. restroy = seul / restron belliteil = styloretos (3

Reaction at cathode : Reduction 24,0 (1) + 2e - - +, (g) +20H 6q)

Reaction at Anode : Oxidation 24,0(1) + -> 0, (8) + 4H+ (aq) + 4e-

6 H30 (1)

→ 0, (g) + 2+, (g) + 4+, 0(d) 640 (D)

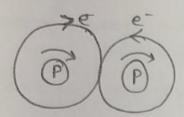
(B) 6He + (B) 60 ← 2400 (e)

(ii) By electrolysis of Ba (OH), (aq) -> Highly buse Ho (99.95%) is beloduced by this method. (iii) By coal-gasification -> By reduction of osteam on caubon: $C(g) + H_{3}O(g) \longrightarrow CO(g) + H_{3}(g)$ Red esteam Rot co 4 Hz in 1:1 eratio = water gas 1:3 statio = synthesis gas syn gas synthesis methanof. New convention -> other than 1:1 ratio it is called syn gow used to produce alcohol & Ryderocambon. Removal of co goes is done by treating mater goes mixture with esteam in presence of Fechoy catalyest.

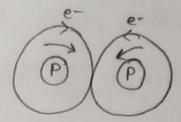
(0g) + Hg (g) Fe(CHO4) + CO2 + 2Hg NOOH > NOO CO3

alst si tic sueferent sop restore more pertite sic os mater gas shift exn.

PHYSICAL PROPERTIES OF HYDROGEN


(i) Cotompessos, odompessos, toestelessos 4 combuostible goos. (ii) It is used as fuel in socket in liquid fourm. (iii) Reactivity is Down due to high bond energy of H-H & small bond length of H-H bond.

(iv.) H-H Bond energy -> 439 KJ/mof & Bond Dength -> 74 Pm (v.) H-H bond length is shortest among all single bonds.



ORTHO & PARA HYDROGEN

- -> Each changed particle shows spin
- -> Electeron & peroton both estames upin.
- -> Electron Row opposite opin.
- -> Paroton can skow same / opposite spin.
- -> Deutro & pasia forom combinedly to a nucleasi isomests of each other.

outho - Ryderogen (barralled ospin)

paya- Ryderogen (opp. opin)

Ceutho four of Ho

- -> When the boloton in nucleus have spin in same dissection.
- -> Move stable. Paula four how tendency othi betweented into outhor
- -> It exist at high temp.
- -> At a soom temp. basia : 04+40 = 1:3

Pasia form of Ha

- -> When the boloton in nucleus have uspin in opp. distection.
- -> Lesse estable.
 - -> It exist at low temp.
- -> (below soom temb) at fuerzing boint to exist in basia four only.

COMPOUNDS OF HYDROGEN

- 1. Hyderides (i) Jonic (ii) Covalent (iii) Non- stoickiometric
- a. Oxides (H,O,D,O)
- 3. Peul- oxides (4,0,)

HYDRIDES

(i.) Jonic Hydride

- ionic tuduidos. ionic Ayduides.
- -> 5- block metals combine with hydringen to four ionic Aydaide. except Be & Mg (peredominantly covalent) Ex- LiH, NOH, KH, RbH, COSH : ADBOLI metal Aydonides Caty, sully, Bally: Albaline earth metal hydrides.
 - The ionic estaucture of these tyderides sessemble with Norch.
 - on valine tyderides -> do they are to a walt like (valine: sea mater: Nac)

LiH > NOH > KH > ROH > COSH: Boiling pt. & melting pt.

L.E of Charige

→ Due to increase in size of metal atom, lattice energy decreases as a sessult MP & BP decrease on moving down the group.

Peropositions of Jonic Tryderide

-> Theore - Ayderides peroduce to good on Ayderolysis

NaH + 40 ---> NaOH + 40 (8)

- -> On electrolysis of these tyderides to (9) is released
- at anode. -> These typhuides makes complex compounds (Reducing

4 LiH + Alcy - Study + 3Lich strong R.A

(Lithium aluminium hydride)

NaH + BoH6 - ShaBHy Stelong R.A (Sodium boue Ryderide)

(u.) Metallic Tyderides -> These tyderides are formed by d & & block metals. > Hyderegen due to small size occupy some space of the interestitial sites 4 therefore they are blow

M (M) Interestitial ladlice site

These tyderides are always non-estoictionetric i-e,

Ex-> TiH 1.5 to 1.8 Zett 1.3 to 1.5

interestitial hyderides.

-> Among D- block metal, group 7,8,9, do not four hydrides 7 this is to/a tyderide gap. (Fe, Co, Ni orthown tyderide

(iii) Covalent on Non-metallic hyderide -> These are formed by P-block element except noble goos.

Characteristication of covalent hydride

(i.) e-- Deficient

(ii) e--Parecise

(iii) e-- RICR tyderides

e-- Deficient

- -> Do not follow Lewis octet sube.
- -> Lessos than 8e in the valence shell.
- -> Ex. ADH3, BH3
- -> Generally foormed by 13th group element.
- -> These act as Levels acid
- -> ADH3 & BH3 exist in dimen for estability.

e- Parecise

-> Follow Louis octet sule.

-> Generally formed by 14th gooup element

-> Ex. CHy, SiHy, Gety, PbHy

e Rich Rydalides

-> These contain extera e- pais (Pone pais)

-> Grenewally formed by 15, 16, 17 group element.

-> TRease follow Leveis octet enve.

-> Ex -> NH3, PH3, HOO, HOS, HF, HO

-> These out as Lewis boose.

COMPOUNDS OF HYDROGEN

1. 4,0 (Noemal water)

3. Da (Heavy mater)

3. Ho 0.3 (Hyderogen per oxide)

HO (NORMAL WATER)

.ti ni restorn soniatnos atreas fo 1,08 <

-> Molecular massos = 18

- Motecular mass is low so it tas tow attractive forces.

-> Melting bt. = 273K

-> Boiling pt. = 373K

-> & flower H- bonding

D20 CHEAVY WATER)

-> Motecular mass = 20

-> Mofecular mass is more high so it has more attendative forces.

 \rightarrow Melting pt. = 374 K \rightarrow Boiling pt. = 376 K

-> & house D- bonding.

STRUCTURE OF WATER

Grous

1. Discuete units Hoo molecules bulesent.

a. Due to l.p - D.p stepulation bond angle = 10405

3. Hybridization: osp3 Shape: Bent/angulary

Liquid

1. Water motocules are bonded Appoint weathpot Hyderogen bond

Bolid

1. Water molecules ase teterakedually Rydsigen bonded. 2. Cage like 1219. stier meet

-> Due to voids in 1854. ice density of ice is Dow. restor resto estably ti old

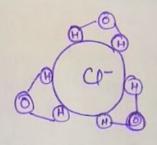
-> One water morecule in ice form can make max. 4 H-bond

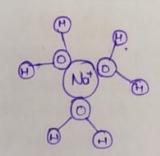
Density of water

-> Denosity of water is max at 4°c & decrease above & below of 4°C.

Potasi natusie of matesi

-> 4,0 is polar volvent box net dipole is not zero.


-> Like dissolve like: mater dissolves ionic 2 popar comp.


-> HOO ROOS Righest dielectoric constant (84) so it is

a universal solvent.

-> The dipote moment of 400 is 1.84 D

HYDRATION OF NOW IN WATER

Hydrated Compound of Water

- -> Anhyderous walt: Cusoy
- -> Hyderated walt: CUSOy. 5H,0 (Blue vitaoil)

This water of cayostallization can be in 3 form:

- (1.) Coserdinated Worter
- (2.) H- bonded Water
- restar (3.) Interestital weater
 - 1. Coordinated Water :- Hoo bonded with coordinate bond.

 Ex > [C4 (HoO)6]+3, [Ni (HoO)6]+2
- 2. H- Bonded Water & HOO bonded with H bond. Exc -> Cusoy. 5400, Fesoy. 7400, Znsay. 5400

CUSOY. 5 HOO - CUSOY. 4HOO + HOO

CUSOY · 4HO - Sterong CUSOY + 4HO

3. Interestitial Water & 400 occupy interestitial site in Back lattice.

Ex -> Backs. 240