

Handwritten Notes On Redox Reactions

- Redox Reactions
- * Oxidation: 1. Addition of oxygen or an electronegative element. 2. Remondat of hydrogen or an electropositive element. 3. Loss of electrons or increase in oxidation number.
- * <u>Reduction</u>: J. Addition of hydrogen or an electropositive element. 2. Removal of oxygen or an electronegative element. 3. Gain of electrone or decrease in oxidation number.
- * <u>Redox reactions</u> are the reactions which involve oxidation and reduction simultaneously.

• A substance which undergoes reduction acts as an oxidising agent & the substance which undergoes oxidation acts as a reducing agent.

- * Oxidation number: It is the residuat charge which an atom appears to have when all the atoms surrounding it are removed. Bringing Excellence to Students"
- * Rules for assigning Oxidation Number:

Species	ON	Examples.
1. Elements	Zero	$N_2, \alpha_2, 0_2$
2. Mono atomic ions	same as Charge	$Na^{+}(I)$, $Mg^{2+}(I)$.
3. Hydrogen i) with non-metal ii) woth metals	+1 - 1	$H_2O_{1_2}S_{1_2}S_{1_2}KH$ LiH, CaH ₂ , KH
4. Oxygen i)in peroxides ii)in superoxides iii)in superoxides iii)in fluorides iv) in ozonides	-2(mos+1y) -1 -1/2 +1,+2 -1/3	H_2O , CaO, NaOH H_2O_2 , BaO ₂ KO_2 , CSO ₂ O_2F_2 , OF ₂ KO ₃

C

1

Li, Na, K etc. 5. Alkali Melals +1 Be, Mg, Ca etc. 6. Alkahne earth +2metals HF, OF2, Lif. -1 (always) 7. Auorine d-block: 8. p-,d-,f-Variable. fe(+2,+3), Cu(+1,+2), block elements Mn (+7,+6,+5,+4, Highest ON of any +3,+2 etc.) element is not p-block: As (+3,+5), 86 (+3,+5), more than group no. of the element Sn(+2,+4) etc. in Periodic table. f - block : Ce(+3,+4), Eu(+2,+3).9. ON of ions. $SO_4^{2-} - (-2)$, $NO_3^{-} - (-1)$, $NO_2^{-} - (-1)$, $OH^{-} - (-1)$, $P0_{4}^{3-} - (-3)$, $O(1^{-} - (-1))$, $P0_{3}^{3-} - (-3)$, $N0^{+} - (+1)$, CNT - (-1). * Some important determinations of ONT: 1. Fe (co) 5 → (co) neutral. Hence, ON of Fe → Zero. 2. $\underline{Cro_{5}} \rightarrow \underline{1}$ $\underline{Crc_{1}}$ $\alpha + 1 \times (-2) + 4 \times (-1) = 0 \Rightarrow \alpha = +6$ 3. $H_2 \underline{S} 0_5 \rightarrow H - 0 - \overset{"}{\underset{0}{\overset{"}{\overset{-}}$ S->0 4. $\operatorname{Na}_2 S_2 O_3 \rightarrow \operatorname{NaO} - S \xrightarrow{\oplus} O Na$ $S \oplus \rightarrow -2$ due to coordinate bond $2\times(+1) + 3(-2) + \alpha + 1\times(-2) \implies \alpha = +6, S@ \rightarrow +6$ S. Na₂S₄O₆ \rightarrow $Na0 - \frac{5}{5} - \frac{5}{5} - \frac{5}{0} - \frac{5}{0} = 0$ $2x + 2 \times 0 + 6 \times (-2) + 2 \times (+1) = 0 \Rightarrow x = +5$

Redox Reactions.

6. $fe_30_1 \rightarrow Fe_30_1$ is a mixture of Fe0 h Fe_20_3 .		
$f_{c,0} \longrightarrow f_{c} (+2) \qquad f_{c_2} \circ_3 \longrightarrow f_{c_2} (+3).$		
* Auto Oxidation - Reduction Reaction:		
1. $2 \ltimes \alpha \circ 0_3 \longrightarrow 2 \ltimes \alpha \circ 1 + 3 \circ 0_2$		
2. $2 Pb (NO_3)_2 \longrightarrow 2PbO + 4NO_2 + O_2$		
3. $2NH_4NO_3 \longrightarrow 2N_2 + 4H_2O + O_2$		
* Disproportionation reaction:		
1. $Cl_2 + 2NaOH = NaOCl + NaCl + H_2O$.		
2. $P_4 + 3Na0H + 3H_20 = PH_3 + 3NaH_2PO_2$		
* Comproportionation reaction:		
1. $KBr0_3 + 5KBr + 6HCt = 3Br_2 + 6KCt + 3H_20$		
* Balancing of Redox Reactions:		
1. Oxidation number method: i)9dentity atoms which undergo change in ON.		
ii) Calculate the increase or decrease in the ONT		
per norm & multiply it by number of atoms		
underepting that change, if increase or decretise is		
then multiply by state one interior		
them equal, whad the fit mean and		
and the madility is pasied one internet		
the droducts		
of hydrogen atoms in the exposession on the two sides		

C

🚯 EXAMSROADDFFICIAL 🤜 EXAMSROAD 🥑 EXAMSROAD

2.

equal by adding H20 to the reactants or products & fanally oheck the no. of oxygen atoms. 2. Half reaction method: 1) Separate the equation into half-reactions. ii) Balance the atoms other than 0 and H in each reaction individually. iii) for reactions occurring in acidic medlum, add H20 to balance 0 atoms & H+ to balance H atoms & for basic medium, It atoms are balanced by adding H2O to the side deficient in Hatoms & equal number of OH Fons are added to opposite side & then duplicacy is removed if any. in) Add electrons to one side of the half-reaction to balance the charges & make the number of electrons equal in two half-reactions by multiplying one or both half-reactions by appropriate number, v) Add two half-reactions to achieve the overall reaction & cancel the electrons on both sides.

* Alumine is the strongest oxidising agent & lithium is the strongest reducing agent;