EXAMS/is ROAD

"Bringing Excellence to Students"

Handwritten Notes

on

Coordinating Compounds

O-ORDINATION (OMPOUNDS

When Aq. sol ${ }^{n}$ of two or nore the of Sals es sulsjected to rustallize new of
compound is fommeal wrideconteins ef compound is fommed which conteins af
cons of both salts is called Adedition of conypdunds/Adrluct. And Swh reactionse: ave called

$$
\begin{aligned}
& \mathrm{KCl}(a q)+\mathrm{MgCl}_{2}(g q) \stackrel{\text { Gys }}{ } \mathrm{KCl} \cdot \mathrm{MaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \text { Carnell } \\
& \text { Aetcliton conypounds el } \\
& 4 C N+F e(C N)_{2} \rightarrow 4 K C N \cdot F e(C N)_{2} \\
& \mathrm{CuSO}_{4}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}
\end{aligned}
$$

Adclition compounds are classifivel into two categories \rightarrow
(1) (x) 5 Ste \rightarrow completely ionize in aqueous. Medium. exist only in solfd state not in aq. medium.
All ions show theiur presence in quir. In medium
All ions gives their otes.

$$
\begin{aligned}
& \mathrm{KCl}(\text { aq })+\mathrm{MgH}_{2} \xrightarrow{\text { Guy. }} \mathrm{KCl} \cdot \mathrm{MgCl}_{2} \cdot 6 \mathrm{~K}_{2} \mathrm{O} \text { Carmellite } \\
& \text { Adolition compond } \\
& \text { Adsluct. } \\
& \mathrm{K}^{+} \approx, \mathrm{Mg}^{2+}, \mathrm{u}^{-} \\
& \text {the Prac } \\
& \text { type of ion } \overline{3(k+}, 0, m j \sqrt[2]{3} \\
& \text { No.gions. } 5 \\
& \text { flame test } \\
& \mathrm{KCl}: \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \xrightarrow{\mathrm{Nq}_{2} \mathrm{CO}_{3}} \text {, whise ppt } \\
& \text { Agno3 } \text { white ppt. }
\end{aligned}
$$

Mohr's Satt.

$$
\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}
$$

type ofions in aq medium $=3$
No.gions in aq. Meclium $=5$
(1) When react with Naon gives geven ppt of $\mathrm{Fe}(\mathrm{OH})_{2}$
(2) $\mathrm{NH}_{4}^{+} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}^{+}$

$$
\xrightarrow{\mathrm{NaOH}_{\longrightarrow}} \mathrm{NH}_{3} \uparrow
$$

gives basic gas when react with NaOH
(3) gives white ppt. When react with

$$
\begin{aligned}
& \mathrm{BaCl}_{2} / \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} / \mathrm{SrCl}_{2} \\
& \left(\mathrm{BaSO}_{4} \mid \mathrm{PbSO}_{4} / \mathrm{SrSO}_{4}\right)
\end{aligned}
$$

$\#$ Alum

$$
\begin{aligned}
& \mathrm{M}_{2} \mathrm{SO}_{4} \cdot \mathrm{~N}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot{ }^{2} \mathrm{H}_{2} \mathrm{O} \\
& {\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}\left[\mathrm{N}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]+\quad \mathrm{SO}_{4}^{2-} \text { site }}
\end{aligned}
$$

$$
\text { (trivalent) }=\text { cue to mallsize }
$$

$$
\begin{aligned}
& =\frac{\alpha^{+}+\mathrm{Na}^{+}, K^{+}}{} \approx \mathrm{NH}_{4}^{+}, \mathrm{cs}^{+}, \mathrm{Rb}^{+}{ }^{+} \\
& =\text {smalusise }
\end{aligned}
$$

$$
\Rightarrow \mathrm{Cr}^{3+}, \mathrm{Al}^{3+}, \mathrm{Fe}^{3+}
$$

\Rightarrow Au donve gives ppt with NoOH
qutht3 ioncomensolulese
\Rightarrow All Aluns gives ppt with Ball_{2}

$$
\text { (while ppt of } \mathrm{BaSO}_{4} \text {) }
$$

Qxample
Potesh alum

$$
\begin{aligned}
& \mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O} \\
& \underset{\mathrm{NaOH}}{\text { Leuis }} \text { (Base) }, \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right] \\
& \mathrm{Al}\left(\mathrm{ONO}_{3} \&\right.
\end{aligned}
$$

$$
\mathrm{AlOVO}_{3} d \Rightarrow \text { So heble }
$$

$$
\text { amp.(LA) soalium salt } \gamma
$$ water socuble

(Q) Find the formula of an calem havigis following properties \rightarrow
(1) Geues basic gas when react with NaOK
(6) Cries white pet when React with BaCl_{2}.

$$
\mathrm{AW} \rightarrow(\mathrm{NH} 4)_{2} \mathrm{SO}_{4} \cdot\left(\mathrm{r}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \eta_{2} \mathrm{O}\right.
$$

Does not ionize completely in (aq;) Mecliem
Conepouncl exist in solid state a cam exist in (aq.) Medium
Sone of the ions 100 es thine identity in aq. Medium, does not give heir tree qualitative test, does not show their presence in q. Medium.
eg. $k_{4} F e(C N)_{6}$
$K(N) \& F P(N)_{2}$ both are wigluly poisnous due to presence of $(C N)^{-}$ion. but when they form compound $K_{4} F e(C N)_{6} A+S$ aq, 801^{n} is no more poisnous, cyanide 50 n looses its identity, Ai son also not give test of Fe^{+2}. $4 \mathrm{KCN} \mathrm{Fe}(\mathrm{CN}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}}$ typegions $\frac{\text { the o. }}{3\left(\mathrm{~K}_{1}^{+}\left(\mathrm{N}_{1}-\frac{\text { Prac. }}{2\left(4 k^{+}+x\right.}\right.\right.}$ $\left.\mathrm{Fe}^{2+}\right) \mathrm{Fe}(\mathrm{CN})^{-c}$
$K^{\top} \vee F e^{2 \rho} \times$ an No.gions 11.5

Sons which are not ionized completely el. in aq. meclium looses their identity el in aq. meclisum written in squared bracket collectucly. Such ions is are called complex ions. \& tons pron In salt which contain such ions are called complex x salt.

In Complex x ion \rightarrow
Alteast one metal ion present whiche! is bonded by/surrouraletl by neutral nuolecules/ions by coorelinate bond. i.e why complex compounds are also named as Cooralination Compar. -bs.

Metal ion which is center of complex act as lewis aciol is called central Meter ion (CMI).

No. of lone pair accepter by a central Metal 10 n is called its coordination member.
Properties of CMI \rightarrow
(1) Small size
(2) f EXAMSROADOFFICIAL
(3) High Zeff
(4) Prescence of vacant or bital of Low energy.

General Coordination number \rightarrow
+3 ions of $3 d$ seluies $=6$ alinays
+2 ions of 30 series $=4 / 6$

$$
\begin{aligned}
& \mathrm{Ni}^{+2} \stackrel{\mathrm{H}_{2} \mathrm{O} / \mathrm{NH}_{3}}{\square} 6 \\
& \mathrm{Cl}^{\mathrm{C}} \mathrm{C} \\
& \left.P d^{2+}, P t^{2+}, A u^{3}, A_{d S P^{2}}{ }^{2} d^{8}\right)=4 \text { alvays } \\
& d s p^{2} \text { sq. planar dia. } \\
& P d^{4}+, P t^{4}+3=6 \text { aluays } \\
& d^{2} s p^{3} \text { diamag aluays }
\end{aligned}
$$

Aut, Agt $=2$ always
Config $\rightarrow d^{\prime 0}$ sprybricrication
Neutral Molecules or Jons which act as leuris base in complex formati -on are called ligands.
No. of lone pair donated by a ligand is caleed its denticity.
(Q) Find the denticity of neutral ligand x in given complex.

$$
\text { Ans }=3 \quad P t^{4 t} \rightarrow C N=6
$$

Geometry C Complex ion is catlect uoorelination polyhecler. eg \rightarrow Tetrahedral, square planar Charge on complex ion is the sum e of oxiclation state of central metal c ion or ligand.
Space in 3 d where coordinate bond e form bl central metal ion e ligands is cabled coorelenation sphere, part inside the siguare bracket represent He coordination sphere.
\Rightarrow Species inside a coordenation sphere is non-ionizalsle while species present in ionization sphere is ionizalsle
Simple ions ariel form Sonic bound with complex ion es called counter ion.

Suit-2er Salt
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]_{4}$

Fischer Salt

$$
K_{3}\left[\operatorname{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]
$$

cownterion SO_{4}^{2-}

$$
k^{+}
$$

ions in aq^{2}. Medium $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+} \mathrm{SO}_{4}^{2-} 3 K^{+}\right.$
$(0 \cdots \cdots)+1$

Fincl Centeal Metal Son in givem Complexes.

$$
+4
$$

1) $K_{4}\left[F e(C N)_{6}\right] \rightarrow F e^{2} T$
2) $K_{3}\left[\mathrm{CO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \rightarrow \mathrm{CO}^{3+}$
3) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{6}^{+2}\right]_{\mathrm{Cl}_{2}^{-2}} \rightarrow \mathrm{Ni}^{+2}$
4) $\mathrm{K}_{2}\left[\mathrm{NiF}_{6}\right] \rightarrow \mathrm{Ni} 4+$
s) Cesplatin (anticancer)

$$
\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \rightarrow \mathrm{Pt}^{+2}
$$

6) $\left(\mathrm{NH}_{4}\right)_{0_{2}}\left[\mathrm{PFCl}_{6}\right] \rightarrow \mathrm{Pt}+4$
7) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right][\mathrm{PtCl} 4]$

$$
P t^{+2} P t^{+2}
$$

8)
9)

$$
\begin{gathered}
{\left[P t^{+2}\left(\mathrm{NH}_{3}\right)_{4}^{0}\right]^{-2}\left[P t(16]^{+2}\right.} \\
P t^{+2}+4 \\
H\left[\mathrm{Au}_{4} \mathrm{Cl}_{4}^{-1}\right]^{-1} \\
\mathrm{Au} \rightarrow+3
\end{gathered}
$$

(16) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}^{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}^{-6}\right]$
(ii) $\left[P t^{+4}\left(\mathrm{~N}_{3}\right)_{3} \quad \mathrm{Cl}^{-1}\right]_{2}^{-2}\left[P \mathrm{Cl}_{6}^{+4}\right]^{+2}$ Ans $\rightarrow P t^{+2}, P t^{+4}$
(12) $\mathrm{Fe}^{+3}+\left[\mathrm{F}_{0}+3 \mathrm{CN}\right)^{-6}-3$

$$
\begin{aligned}
& \mathrm{Fe}_{2}^{+}\left[\mathrm{Fe}^{+2}(\mathrm{CN})_{6}^{-6}\right]^{-4} \rightarrow \mathrm{Fe}^{+2} \\
& \mathrm{Fe}_{3}^{+}\left[\mathrm{Fe}^{+3}(\mathrm{CN})_{6}^{-6}\right]^{-3} \rightarrow \mathrm{Fe}^{+2} \\
& \mathrm{Fe}_{4}^{+8}\left[\mathrm{Fe}_{2}^{+2}(\mathrm{CN})_{6}^{-6}\right]^{+2} \rightarrow \mathrm{Fe}^{+3} \\
& \mathrm{Fe}^{3+}
\end{aligned}
$$

Classification of Complexes \rightarrow
(1) On the basis y charge

Cationic	Anionic	Neutral
[]$^{+}$	[]$^{-}$	[]0
So complex compouvel	may be	

(1)

Simple Cation
Complex Anion
fischer's salt $\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$ sodium Nitro preside

Na. [Fo reran Not
(2) Complex Cation

Switzer salt
Brown ring complex

Simple Anion

$$
\begin{aligned}
& {\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}} \\
& {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}_{5} \mathrm{SO}_{4}\right.}
\end{aligned}
$$

(3) Complex Cation Complex Anion

$$
\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]
$$

[(4) Neutral complex \rightarrow
Osplatin (anti Cancer)

$$
\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]
$$

On the basis of type of Ligands \rightarrow

1) Homoleptic \rightarrow Having only one type of ligand in coordination sphere.
fischer's $K_{3}\left[\mathrm{CO}\left(\mathrm{NO}_{2}\right]_{(3)}\right)$ $\underset{\substack{\text { Salter } \\ \text { salt }}}{ }\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
2) Hetero leptic \rightarrow More than one type of ligand present el en a coovelemation sphere.
Sodium Nitro
prussia
$\frac{\text { Brown ring }}{\text { complex }}\left[F e\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \times \mathrm{NO}_{3}\right] \mathrm{SO}_{4}$ complex x

Cisplation (anticancer).

$$
\left[P t\left(\mathrm{Nn}_{3}\right)_{2} \mathrm{Cl}_{2}\right]
$$

3) On the basis of No. of entreat Metal ion in a coordination sphere.
(a) Mononuclear
complexes \rightarrow only one central metal ion present in a coordination
sphere.
(b) Poly nuclear complexes \rightarrow Mole tran one CMI present in a co. sphere.

$$
\begin{aligned}
& K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \\
& {[\mathrm{Cl}} \\
& 2-
\end{aligned}
$$

4) On the basis of Stability \rightarrow

$$
\begin{aligned}
& M+x L \underset{\text { ins }}{\underset{\text { af }}{\underset{~}{K}}[M\llcorner x]} \\
& k_{f}=\text { formation constant } \\
& \text { Kind }=\text { instability constant } \\
& k_{f}=\frac{1}{\text { Kind }} \\
& K_{f}=[M L x] \\
& {[M][L]^{*}} \\
& K_{f} \gg\left(K_{f} \uparrow\right) \\
& {\left[M L_{x}\right] \gg[M] \&[L]} \\
& k f<1 k+(\downarrow) \\
& {[M L x] \ll[M] \&[L]}
\end{aligned}
$$

Perfect complex \rightarrow
Having high value of formation canst. stable in presence of particuetar reagent.

Imperfect Complex
Low value of formation cons. $\left(k_{f}\right)$ unstable in presence of portimuar reagent

$$
\mathrm{CuSO}_{4}+\mathrm{KCN} \Longrightarrow \mathrm{Cu}_{1}(\mathrm{CN})_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}
$$

$$
k^{+} \text {cu }(C N)_{4}^{3-} \text { - perfect }
$$

perfect w.r.t $\mathrm{H}_{2} \mathrm{O}$ w.r.t H_{2} s Imperfect writ to Hel

$$
\mathrm{CdSO}_{4}+\mathrm{KCN} \longrightarrow \mathrm{Cd}\left(\mathrm{CNO}_{2} \mathrm{Clile}+\mathrm{K}_{2} \mathrm{SO}_{4}\right.
$$

Kr of $k_{3}\left[G_{4}(C N)_{4}\right]>u_{2}\left[C d(L N)_{4}\right]$

All Ammonia and cyan complexes are in perfect in presume of strong arid.
There is no sharp boveler line to distinguish perfect \rightarrow imperfect couple

- Xes.

They are defined in presence of particular reagent.

$$
\text { CLASSIFICATION OF } L I G A N D S \rightarrow
$$

On the basis of charge \rightarrow
(a) Anionic Ligomel \rightarrow In the naming of Anionic liganel suffix ide is replaced ido/o

$$
\begin{aligned}
& \text { ate } \longrightarrow \text { att } \\
& \text { Ste } \longrightarrow \text { ite }
\end{aligned}
$$

As a counterion As a ligand

chloride
chlorialo
Sulphate
shlphatro
s ebonite
sui milo
(b) Neutral Ligands \rightarrow

Crenel name is used in the naming of neutral ligands except

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O} \text {-aqua } \\
& \mathrm{N}_{3} \text { - Ammine } \\
& \text { Co - Caresonye } \\
& \mathrm{No} \text { - Nitrosyl }
\end{aligned}
$$

(C) Cationic Ligands \rightarrow

Sum suffix is usecl in the naming of cattonil 18 gauds

$$
\begin{gathered}
\text { eg } \rightarrow \mathrm{NO}^{+} \rightarrow \text { Nitrosoniuns/Nitrosyliem } \\
\mathrm{N}_{2} \mathrm{O}_{5}^{+} \rightarrow \text { Hydrazinium }
\end{gathered}
$$

On the basis of Denticity \rightarrow only one dong site $=$ mono dentate because they form only one coorelinde. bond with a CMI .

Having two donor site
form three member ling (Edge) compere
they act as monodentate because thees member lung is unstable dele to Angle Strain

unstable sing
form 4 member ring with CMI
4 member sing is stable than 3 member sing but less stable in comparison $5 / 6 / 7$ member ring ale to Angle strain Such igauds prefer to act as Mono dentate ligand but -as per req. y Coordination no. of CMI they can art as bidentate ligand ie why such ligands are known as flexidentabe ligand. -eg. all boxy anions

$$
c r t^{+3}, C N=6
$$

form $s / 6 / 7$ mendser $M i n \rightarrow$ art \rightarrow
as bidentate didenbat ligqual e as bidentate, didentate ligaurd.
\Rightarrow Leqanels Having 3 or molle donose site form s/6/7 membell ling act as polydentate.

Bdonor \rightarrow tridentate
4 dowor \rightarrow tetraclentate
Solonor \rightarrow pentaidentate
6 donor \rightarrow nexa dentate.
CHELLATNG LIGAND \rightarrow
When bedentate or polydentate legand coordenated with a central Metal Ion they form eing ieke structure such rings are called chellate rings and phenomena is called chellation, such ligancls are called chellating liganels
No. of chellate ling formed by a liganal zDenticity -1

$$
\begin{align*}
& \left.\left[\mathrm{Ni}_{2} \mathrm{NH}_{3}\right)_{6}\right]^{2+}+\mathrm{en} \longrightarrow\left[\mathrm{Ni}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+2 \mathrm{NH}_{3} \tag{1}\\
& {\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+2 \mathrm{en} \longrightarrow\left[\mathrm{Ni}(\mathrm{en})_{2}\left(\mathrm{NH}_{3}\right)_{2}^{2+}+4 \mathrm{NH}_{3}\right.} \\
& {\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+3 \mathrm{en} \longrightarrow\left[\mathrm{Ni}(\mathrm{en})_{0}\right]}
\end{align*}
$$

Ambidentate Ligand \rightarrow
Anionic Ligand having two or nor than two rift donor sites but uses one type of donor site when cocrelinated with a central metal ion such ligand are called Amesidentate ligands.
 this cyanate thin yang this cyanato iso thee yanato

Fiexidentate ligands \rightarrow
Ligands wrich cam show variatsle denticity.
Ligancls which form 4 member ring with CMI.
2) EDTA ${ }^{4}$ has pH dependent denticity 4
EDTA
$\uparrow r<$ acetate
tetral
dianuine
ethylene

	Denticity $=6$			Denticity
PH \downarrow	EDTA	6		
Denticity \downarrow	H_{2}	H_{2} EDTA A^{3-}		
	$H_{3} E D T A^{2}$	4		
		3		

$$
\begin{aligned}
& \text { Formula }
\end{aligned}
$$

$$
\begin{aligned}
& 8 \\
& \ddot{3}
\end{aligned}
$$

o
J
H) 9

EXAMSROAD

Classification of ligands on the Basis g Bonding Pattern

classical
(odonor)
(onlyclonor)
(donor as well as
$M \leftarrow-L$
absence of vacant orbital
(and $\times 1^{3 t}$ period donor, absence of π-boned.

$$
\begin{aligned}
& \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \text { on }, F T \\
& \text { en, dien, tried, } \mathrm{N}^{3-} \\
& \mathrm{H}^{-}, \mathrm{NH}_{2}, \mathrm{NH}_{2}^{2-}, \mathrm{O}^{2-}
\end{aligned}
$$

Non-Classical ligands
--donor - π-acceptor donates ep accept in
acceptor')
π-acid ligand
accept in form of π

Bo >1
give these synergic bond

Synergic Bond in Metal carlsonyl
ACC. To NOT $C O \Rightarrow 14 e^{-}$
(i) $C \equiv O 0 \leftarrow$ NBMO go hawing NBMO $A B O=3$ slight
or
C' hawing
slight $A-B$ character
In 'c 'atom is donar Co Reason 1) EN of Cr
2) Energy of $N B M O_{(C)}>N B M O$ (0 (
$C O$ is $14 e^{-}$system 80 it accept-neer e^{-}in $\pi^{*}(100 \% A B$ character) only olonation

$$
M \leftarrow C O A B \perp \quad C O \quad B O \uparrow
$$

(slight)
only acceptance

$$
M \curvearrowright{ }^{100 \%} \underset{10}{(A B) \uparrow} \text { Co BO }
$$

So in metal carlsonye
 Careson

$$
\frac{3>C O}{B O>2}
$$

free $\cos B L<M \cos x \operatorname{coB}$

As donation of metal \uparrow
e - in ABMO of coT
$C O B O W M C O B O T$
$C O B L \uparrow$ MCOBE
$\triangle B E \perp(B L) M C O$
no comments.
(9) Commeuton CO BL in given complexes with respect to x where x is cosL in $\left[\mathrm{Cr}(\infty)_{6}\right]$

$$
P F_{3} / P M e_{3} / P P h_{3} / P H_{3} / R_{2} S / R_{3} A S
$$

As a ligand

No effect on P-Me bond oveler because' p ' accept e- in its a-orbital Practical evidence g co BL streching frequency methool

$$
\begin{aligned}
& \operatorname{Co} B L \\
& \operatorname{Co~} B O \\
& \operatorname{CO} B E \uparrow
\end{aligned}
$$

to struch wo bold req. energy \uparrow frequency relate to energy \uparrow so streching frequency of co

$$
\star \frac{1}{\text { syuorgic Bond }}
$$

Toner - π acceptor \rightarrow

1) They are not Leuris base
2) They can act as ligand in complex formation due to synnergy bonding.
3) They accept e- pair from fuelled d-ortoitle of central metal ion in their $\pi *$ e orbital.
4) Due to symmergy metal ligand BO. invereses sforsility of complex $x \uparrow$ but ligand BO \downarrow.
S) Such ligands a written with preffix η^{*} where x is hepticity of digaucls or nog atoms participate in donation.
5) $c_{2} n_{4} \quad \eta^{2}$-ethylene/ ethylene Qindonation π-interaction Ligand

Nance in ${ }^{\text {donation }}$ MuM

2) \quad CG $_{6} \quad \frac{n^{6} \text {-benzene/ }}{\pi \text {-benzene }}$

3) $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6} \quad \eta^{6}$ - boracine/

(4) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$

$$
\begin{array}{r}
m^{4} \text { butadienef } \\
\pi \text {-butadiene }
\end{array}
$$

(8) allylC3 $\mathrm{H}_{5}=$

1) $\mathrm{CH}_{2}=\mathrm{CH}_{2}-\mathrm{CH}_{2} \sigma$-allye/n allye $\mathrm{M} \leftarrow \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}$
2) $\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2} \eta^{3}-$ allye/ π
3) $\mathrm{C}_{5} \mathrm{H}_{5}^{-} \quad$ cyclopenta
(0) $\rightleftharpoons 00 \mathrm{SSH}_{5}^{-} / \eta-\mathrm{CsH}_{5}^{-}$ 2π
4)

$$
10)>\eta^{3}-5 n_{5}^{-}
$$ 2π

3)

$$
\begin{aligned}
& \eta^{s}-\operatorname{csx_{5}} / \\
& \pi=\operatorname{cs}^{-}-
\end{aligned}
$$

$$
\cdots \cdots,<T 1,<4<,<\cdots, 244
$$

Intext vale

Note: Denticity is not defined for π-donor \& π-acceptor legoud when delocalize πe^{L} participate in donation.
(Q) Compare $C-C B L$ in

1) $\mathrm{C}_{2} \mathrm{H}_{4} \&<$ daisies salt $\left(k\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right)\right.$
2) $\mathrm{C}_{6} \mathrm{H}_{6} \&\left\langle\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{~N}_{6}\right)_{2}\right.$

3) $\mathrm{C}_{5} \mathrm{H}_{5}-<$ A Ferrocene

$$
\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]
$$

Synergic bonding in Lesses Salt

$$
K\left[P t C_{3}\left(c_{2} \pi_{4}\right)\right]
$$

due to trans

$\Rightarrow \mathrm{PtCl}_{3}$ plane is 1 due to $\mathrm{C}_{2} \mathrm{H}_{4}$ Plane
\Rightarrow In free $\mathrm{C}_{2} \mathrm{H}_{4}$ all atoms are present in a plane but in zesies salt due to rept b/w ft $c_{2} H_{4}$ back bond $\& C H-H$ bond all a H atoms are present out g the plane.
\Rightarrow trans effect \rightarrow when strong acceptor present at transposition bond length is larger than from its normal value.

WERNER'S THEORY \rightarrow
Accoveling to werner in complex formation CMI show two types of
valencies
Primary valency seconclary valency

1) $0 . S$ of central metal ion. Cored Number of CMI.
2) Satisfy by anions. Satisfy by ligances

Effective Atomic Number \rightarrow (EAN) Tolal no. of $\theta-s$ in CMI after comple x formation is colled (EAN) of CMI in that comple x.
(Q) $\left[\mathrm{Cr}\left(\mathrm{Nn}_{3}\right)_{6}\right] u_{3} \quad A n s=33$
(Q) $\left[V(\mathrm{CO})_{6}\right] \quad=$ Ans 286
(Q) $\left[3 C\left(\mathrm{r}_{2} \mathrm{O}\right)_{6}\right]^{3+}=30$
(8) $\left[T_{1}\left(C_{N}\right)_{6}\right]_{-6}^{3-}=37<x$ 我
(Q) $\left[\mathrm{CN}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}^{34}=36\right.$
(Q) $\left[\mathrm{Fe}^{+2}\left(\mathrm{CSH}_{5}^{-2}\right)_{2}^{2}\right]$ 2) $38 \times 26-2+12$
(Q) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)(\text { dien })(\mathrm{en})\right]^{2+} \rightarrow 28+2$ $\frac{\text { Fricentale }}{\text { Frin }}$

$$
\begin{aligned}
& \rightarrow 28+2 \\
&+872 \\
& \rightarrow 38
\end{aligned}
$$

(8) $5^{2} 9^{x} 27812$
(Q) $K_{3}\left[\mathrm{CO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \rightarrow 39 \rightarrow 3=3$
(g) $\mathrm{Mn} \mathrm{Cl}_{4}^{2}-322+8$
(Q) $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-4}=4636$ $26 \quad 12$

$$
\begin{aligned}
& \left.\operatorname{In}(a c a c)_{2}\right]=36 \\
& {\left[P t(g l y)_{3}\right]^{+1} \Rightarrow 86 \quad 78-4+12} \\
& {\left[\mathrm{Pd}(\mathrm{ScN})_{4}\right]^{2} \Rightarrow 46-2+8} \\
& H\left[A u C_{14}\right] \Rightarrow 85 \\
& \operatorname{Ag}(C N)_{2} \quad z \quad S 0 \quad 47-1+4 \\
& 474 \\
& \text { SIDUICK (EAN) RULE } \rightarrow \\
& \text { (18@Rute) }
\end{aligned}
$$

According to sideuick to gain stalsility CMI in complexplwant fo achiene EAN = next inert gees ate no.
Comple follow EAN rule means EAN of CMI for 3 d weries $36,4 d$ series S_{4}, 80 series 86
APPLICATION OF EAN RulE \rightarrow
Metal Carlsonyls follow CAN Tule
(g) Find the value of x, y, z in giclem complexes

Oxidising/Reclucing Nature \& Díuerisatio tendencer of metal carlsonyls

$$
\begin{aligned}
& \mathrm{Mn}\left(\mathrm{CO}_{5} \rightarrow \mathrm{Mn}_{2}(\mathrm{CO})_{10}\right. \\
& \mathrm{CO}(\mathrm{CO})_{4} \rightarrow \mathrm{CO}_{2}(\mathrm{CO})_{8} \\
& \mathrm{Fe}(\mathrm{CO})_{4} \rightarrow \mathrm{Ce}_{3}(\mathrm{CO})_{2}
\end{aligned}
$$

Iof ind Metal - Metal Boncls in poly uvelear corbsonyls.
$M_{n} 2(0)_{10}$

$$
\begin{aligned}
\text { No. of e }
\end{aligned}
$$

No. of Bonds $=2 / 2 \mathrm{z}$

$$
F e_{2}(\mathrm{CO}) \mathrm{g} \quad 36 \times 2-(26 \times 2+9 \times 2)=1
$$

$$
F \otimes_{3}(0)_{12}
$$

VALINE BOND THEORY \& COORDINATION
COMPOUNDS \rightarrow
According to VBT. Central Metal ion provides trvacant oresital equal to its coorclenation ho. These vacant. orbitals undergoes by b. and
form equal energy hyloriel orbitals and these hybrid orbitals are conpi gored at $3 D$ in Min. repulsion Which defines geometry around
$C N$
2
3
geo
linear
trigonal planar

4 spins $\quad p^{3}$ Fetraled
$d^{3} s(d x y d x z d y z)-r a d$ $d s p^{2}\left(d x^{2}-y^{2}\right) \$ q$. plan
$5 \quad d s p^{3} / s p^{3} d \quad$ T.B.P
$d p^{3} / s p^{3} d$ square pyramidal
$6 \quad d^{2} s p^{3} / s p^{3} d^{2}$ sq. bipgramidal, oct

Ortsital
Inner complex \rightarrow when $n-1$ d orbital participate in ny bs.
Outer- n-n \rightarrow when n al orbital e. participate in hyde

Classification of ligands on the basis of Bond strength \rightarrow
(1) S FL (strong field ligand)
\rightarrow form strong bond with CMI
(2) WRL \rightarrow (weak \rightarrow form weal \rightarrow)

Properties of SFL

1) good donor size \downarrow

Lewis lease - be charge \uparrow

$$
E N J
$$

2) good acceptor

$$
\text { SFL } \rightarrow C P P T N
$$

$W F L \rightarrow 0$, halogen General strength of ligand

$$
c>N>O>\frac{E_{S}}{l_{1}}
$$

SPECTROCHEMICAL SERIES \rightarrow
It is a relative strengtls of ligand in terms of Jhermodeynamics (ΔH) wirt a particular CMI

I- $^{-}<\mathrm{Br}^{-}<\mathrm{SCN}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}<\mathrm{NO}_{3}^{-}<\mathrm{F}^{-}<\mathrm{OH}^{-}$
Itura Bura Ina cokaly Shamu Nai^{\prime} Fulle Hath

$$
\left\langle\mathrm{CH}_{3} \mathrm{COO}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}^{-}<\mathrm{H}_{2} \mathrm{O}\right.
$$

aise uske pani
bharg
$<$ Nes $<\in$ OTA $^{4}<\mathrm{NH}_{3} \approx$ Py<en \approx dipy
Navinchandra in divo Amman dincer
Saxena
parme

$$
<\mathrm{NO}_{2}^{-}<\mathrm{CN}^{-}<\mathrm{CO}
$$

Naq sena cowr Gkume rahe the

In presence of strong field ligance és are fored to pair so that no. I unpairede-s t value of spin only magretic moment L such complexes are called low spen complex. An presence of WFL there is no effect on noig umpaised ets value of Spin onle magnetic moment is high in comparison of low spin comple xes evech complexes are called high spien complexes.

$$
\begin{aligned}
& K_{4}\left[F e(C N)_{6}\right] \\
& C N=6 \quad d^{2} s p^{3} / \mathrm{sp}^{3} \mathrm{~d}^{2} \\
& \text { Fee dr Get } 4 k / 1 / 1 / 1 / 1 \\
& \text { ligand }=C N^{-}(S F L)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Cl}^{2} \mathrm{sp}^{3}
\end{aligned}
$$

low spincoruplex, inner orbital, Di

$$
K_{4}\left[F e F_{6}\right]
$$

$$
\begin{aligned}
& C N 26\left(s p^{3} d^{2} / d^{2} s p^{3}\right) \\
& F e^{2+} \rightarrow d{ }^{6} \\
& \text { ligand }=F^{-}(W F L)
\end{aligned}
$$

High spin, para

$$
\begin{aligned}
& \operatorname{Cr}\left(\mathrm{NH}_{3}\right)_{6}^{3+} \\
& \mathrm{Cr}^{3+} \mathrm{d}^{3} \\
& \text { legand } N_{3} \text { (SFL) } \\
& \\
& d^{2} s^{3} \text {, inner, para } \\
& \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+} \\
& C r^{3+} d^{3} \\
& \text { ligand }=\left(\mathrm{H}_{2} O\right) \text { WFL } \\
& \text { T|11| }{ }_{d^{2} \sec \text {, inner }}^{35} \\
& \mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+} \\
& \mathrm{Ni}^{2} d^{8} \\
& \mathrm{NH}_{3}\left(S \mathrm{SF}_{1}\right) \\
& \begin{array}{|l|l|l|l|}
\hline 1 v & 16 & 14 & 1 \mid \\
\hline
\end{array} \\
& 2 t s p^{3} d 2 \\
& \text { Ni(U, O). }
\end{aligned}
$$

WFL

$1 \mid$	1	1	1	1
16	s_{2}	1	1	1
14	$p^{3} d l^{2}$			
14	12	1	1	
1	1	1	$1 \mid$	1
14	1	1	1	1

Rolig
Q. Acentreal metalion form innerorbital complex in presence of SFL whik in presence of wFl it form para. complex. Melal ion can be in CN 6 .

$$
\mathrm{Mn}^{2+} \mathrm{Ee}^{2+} \operatorname{Co}^{3+} \mathrm{P} t^{4+}
$$

(g) Find total no. of CMI wrich an form dicamegnetic complex $S c^{3+}, T, 3+1, v-34$ $\ln C N=6$

$$
\begin{aligned}
& \mathrm{Cr}^{0}, \mathrm{mon}^{+2}, \mathrm{Fe}^{3+} \\
& \mathrm{Cos}^{*}, 2 \mathrm{n}^{2+}, \mathrm{Cd}^{2+} \\
& \mathrm{N}_{1}+4, \mathrm{Pd}^{4+}, \mathrm{Cu}^{2+}
\end{aligned}
$$

$$
C N=\mathbb{L}\left(s p^{3} / d s p^{2}\right)
$$

$$
\mathrm{Ni}_{\mathrm{NN}_{2}(\mathrm{O})_{4}} \mathrm{NiCl}_{4}^{2-}{\mathrm{Ni}(\mathrm{CN})_{4}^{2-} \quad 2 \mathrm{n}\left(\mathrm{NH}_{3}\right)_{4}^{2+}}^{2}
$$

$$
\mathrm{CN}_{2} 4
$$

\#IMPORTANT POPNTS \rightarrow
(1) In coordination no. 6

$$
\begin{aligned}
& d^{0,1,2,3} \rightarrow d^{2} s p^{3} \text { alurays } \\
& d^{8,8,10} \rightarrow s p^{3} d^{2} \text { aluays } \\
& d^{4, s, 6,7}\left\{\begin{array}{l}
s F L \\
d^{2} s p^{3} \\
S F L
\end{array}\right)
\end{aligned}
$$

(2) In coordination no. 4

$$
\begin{array}{r}
a^{8,9} \xrightarrow{\omega F L} s p^{3} \\
\xrightarrow[S F L]{ } d s p^{2} \\
d^{10} \longrightarrow s p^{3}
\end{array}
$$

1) Ingeveral NH_{3} is $S P L$ but incane of $\mathrm{Mn}^{2 t}, \mathrm{Fe}^{2 t}, \mathrm{Co}^{2 t}$ it acts as ure1
2) In general, odonor ate lignds are WRL but in case of con 3t 0.en ${ }^{24}$ ther act as sEL (exceot NO 0_{0} - it
3) In general all ligands are sFLfor 4 af, $\mathrm{Sol} k+4$ ions.

$\left[\operatorname{Cr}(\mathrm{N})_{6}\right]^{3-} d^{3}$ SFL $d^{2} S p^{3}$ para $\left[\operatorname{cr}(e n)_{B}\right]^{2+} d^{4} \quad S=2 d^{2} s p^{3}$ para $\left[\operatorname{Cr}\left(2 \mathrm{O}_{4}\right)_{3}\right]^{3-} d^{3}$ wFL $d^{2} s_{p}^{3}$ para

* $[C r(g l y) 3]^{0} d^{3}$ SFL $a^{2} s p^{3}$ $\left[\operatorname{Mn}\left(n_{2} O_{6}\right]^{2 t} d^{S}\right.$ wFL $s_{p}^{3} d^{2}$ $\left[\mathrm{Mn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} a^{5}$ WFL $\mathrm{sp}^{3} d^{2}$ $\left[M n(N e S)_{6}\right]^{4} d^{S} w F L$ sp $p^{3} d^{2}$ $\left[\operatorname{Mn}(e n)_{3}\right]^{2+} d^{s}$ SFL $S p^{3} d^{2}$ $\left[\mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{4-} d^{-} \mathrm{WFL} s p^{3 d^{2}}$
$\left[M n((N))_{6}\right]^{4} d^{5}$ SFL $d^{2} S p^{3} \quad P$ $\left[F e\left(\mathrm{Nr}_{3}\right)_{6}\right]^{2]} d^{6}$ WFL $s p^{3} d^{2}$ $\left[F e\left(\mathrm{CN}_{B}\right]^{4-} d^{6}\right.$ SFL d $d^{2} 3 p^{3} d$ $\left[F e(e n)_{3}\right]^{2+} d^{6} S F L d^{2} s p^{3}$ d
$\left[\begin{array}{c}\text { e (phen) } \\ \text { strengte } \\ 3 \text { ren) }\end{array}\right]^{2+} d 6$ SFL $-\cdots$ $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} d 6 \mathrm{WFL}$ $\left[F e\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{4-}$ d 6 WFL
$\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{OH}_{2}\right)_{2} A^{-} d^{6}\right.$ WFL $\mathrm{Sp}^{3} d^{2} p$ $\left[F e\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} d S \quad S F L d^{2} s p^{3} p$ $[F e(e n)]_{3}^{3+} d S$ SFL $d^{2} s p^{3} p$ $\left[F e(N e S)_{6}^{3-} d S\right.$ SiFL $S p^{3} d^{2} p$ $\left[\mathrm{FeFG}_{6}\right]^{3-}$ dS wFL $5 p^{3} d^{2} p$ * $\left[\mathrm{Fe}\left(\mathrm{SCN}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+1} d^{3} \omega F L \mathrm{Sp}^{3} d^{2} p$
[Fe(CN) $)_{6} J^{3-} d^{S}$ SFL $d^{2} s p^{3} p$ $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} d^{7} \quad W=L \quad d^{2} s p^{3} d$ $\left[c_{0}(e n)_{3}\right]^{3+} d 6$ SFL d'sp ${ }^{3} d$ $\left[\operatorname{Co}(\ln)_{3} J^{2+} d^{6}\right.$ SFL $S p^{2} d^{2} p$ [Co(acac) 3] de SFL d ${ }^{\text {sp }}{ }^{3} p$ $\left[\operatorname{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3} d^{6}$ SFL $d^{2} s^{3}$. d $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]^{2+} d 7 \mathrm{WFL} s p^{3} d^{2} P\right.$ $\left[\mathrm{Co}_{0}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} d 6$ SFL dzp d $\left[\ln (C N)_{6}\right]^{-3} d^{6}$ SFL $d^{2} S p^{3} d$ Γ CoCCNI. $7^{4-} d 7$ SFL d ${ }^{2} s p^{3} \quad D$ f Examsroadofficial (1) Examsroad © examsroad © examsroad
$\left[\mathrm{N}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} d^{8}$ WFL $s^{3} d^{2}$
$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)\right]^{2+} d^{8}$ GFL $\mathrm{Sp}^{3} \mathrm{~d}^{2}$
$\left[N i(e n)_{3}\right]^{2+} d 8$ SFL $S p^{3} d^{2}$
TNi(en) $\left.\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+} d^{8}$ SFL $S p^{3} d^{2}$
$\left[F e\left(n_{2} O\right)_{6}\right]^{3+} d^{5} \omega F L S p^{3} d^{2} p$
$\left[\mathrm{Ni}(e n)\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} d^{8} \mathrm{SFL} S p^{3} d^{2} p$
$\left[p t C l_{6}\right]^{2-} d 6$ SFL $d^{2} P p^{3} d$
$\left[P+\left(\mathrm{NH}_{3}\right)_{6}\right]^{4+} d 6$ SFL $d^{2} s p^{3}$ ot
$\left[P d\left(l_{6}\right]^{2-} d 6\right.$ SFL $d^{2} s p^{3}$ d
$\left[P d\left(\mathrm{NH}_{3}\right)_{6}\right]^{4+} d 6$ SFL $d^{2} s p^{3} d$
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{4}\right] d 6$ SFL $d^{2} \mathrm{Sp}^{3} d$
$\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{4}\right] d^{6} S P_{L} d^{2} 3 p^{3}$ 9]

$\left[\mathrm{N} \mid(d m g)_{2}\right] d$ SFL d SR

$$
\begin{aligned}
& {\left[\operatorname{lu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{2-} d^{9} \mathrm{SFL} d p^{2} p} \\
& {\left[\mathrm{NiF}_{6}^{+4}\right]^{2-} d 6 \mathrm{SFL} d^{2} \mathrm{sp}^{3} d} \\
& {\left[\mathrm{MnCl}_{6}^{+4}\right]^{2-} d^{3} \text { SFL } d^{2} 3 p^{3} p} \\
& {\left[\mathrm{PECl}_{4}\right]^{2}=d 8 \text { SFL } \mathrm{Sp}^{3} \mathrm{~d}^{2} p} \\
& {\left[P E\left(N H_{3}\right)_{4}\right]^{2 t} d^{8} \text { SEL } d S P^{2} d} \\
& {\left[P d C l_{4}\right]^{2-} d^{8} \text { SFL } \mathrm{dSP}^{2} d} \\
& \text { IPd(NH3 } \left.)_{4}\right]^{2+} d 8 \text { SFL } d s p^{2} d \\
& {\left[F e(d \operatorname{lng})_{2}\right] \text { SFL } d^{6} p^{2} d^{*}} \\
& C \cdot N=S \quad s p^{3} d / d s p^{3}
\end{aligned}
$$

square pyranidal triagonal pyranidal $d\left(x^{2}-y^{2}\right) \quad d z^{2}$

ligand:-SFL exFept ligand:- WFL
' $(0$ '
$\& C O$

$$
{ }^{\circ}\left(0^{\prime}\right)
$$ geometry

example $F e(C O)_{5} T B P$
Mn(co)s TBP
$\operatorname{Co}(\mathrm{CO})_{S}^{+s}$ Y $B P$
Cu(Cis) TBP
NicN S_{S} Sp
$\Rightarrow F E(C O)_{S}$

$$
F e(\pi \cdot s)^{3} d^{6} 4 s^{2}
$$

Fe(In presence of SFL) $3 d^{8}$

\# Limitation 8 g VBT \rightarrow

1) There are so many Assumptions
2) It does not expeain \rightarrow
a) colour of complexes
b) stability of complexes
c) SFL \& WFL
\&cotor of compal!
\square
CRYSTAL FIELD THEORY

According to CFT central netal ion equal to (tve) point charge. Anionic legand = negative point charge. Neutral ligand equal to Dipole, sointeraction b/w ligavil ECMI is Electrostafic:

When ligand approaches CMI it experiences two types of forces \rightarrow

1) Force of Attraction due to nuclees of CMI.
2) Force of repulsion due to dorbital e's gCMI.
3) In particular geometry doolitit ligands are near to samey the d-orbiteles and far from other a oxbitals, so ol orbital experience different-different repelsi ve forces so d -arbital spelicinto different energy set which is called orystal filled spliting. Energy elifforenc b/w orbitals is called spitting enerey \triangle
doresital

face cenver of cuke
 estas of centre of cetse

Splitting in sq: planar \rightarrow

octahedral
tetragonal celong $x \$ q \cdot p$ lomax

\# Relation $b / \omega \Delta 0, \Delta t, \Delta s p$
$\begin{array}{lccc} & \Delta s p>\Delta_{0}>\Delta t \\ \text { orbital } & 1 & 2 & 3 \\ \text { ligand } & 4 & 6 & 4\end{array}$

$$
\begin{aligned}
& \frac{\alpha}{6} \Delta_{0}=\frac{3}{4} \Delta t \\
& \Delta_{t}=\frac{4}{9} \Delta_{0} \\
& \frac{1}{4} \Delta s p=\frac{2}{6} \Delta_{0} \\
& {\left[\frac{3}{4} \Delta_{p}=\Delta_{0}\right]}
\end{aligned}
$$

$\#$ Factors affecting splitting energy \rightarrow

As att ${ }^{r}$ b/w CMI and ligand 1 distance v rep blu de- α Legends splitting \uparrow

1) $\Delta \alpha\left(+v^{B}\right)$ the charge on CMI.

$$
\triangle K_{4}\lceil\operatorname{Fe}((N),\rceil
$$

(2) $\triangle \alpha$ zeff of $C M I$

3 d 4 d Sd dxFe, zeff \uparrow
$\triangle \mathrm{NiCl}_{4}^{2-}<\mathrm{PdCu}_{4}^{2-}<\mathrm{PtCl}_{4}^{2-}$
(3) $\Delta \propto$ strengte of ligand

$$
\begin{gathered}
\Delta S F L>\triangle W F L \\
\left.\Delta\left(N H_{3}\right)_{6} C\right]^{3+} \\
\left.C N\left(N_{2} O\right)_{6}\right]
\end{gathered}
$$

(4) geometry \rightarrow

$$
\begin{array}{ll}
\Delta s p>\Delta_{0}>\Delta t t_{t} \\
{\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+t}} \\
\text { octa. } & \text { terranedeal }
\end{array}
$$

N
Date

そう二
$9 \frac{5}{3} \frac{5}{3}$ § $\frac{5}{2}$

\# low Spin \& High spin Complex \rightarrow

Pairing energy:- energy re to pair e^{-}in an orbital
(g) Which
(A) $\left[\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{\mathrm{spin}}^{3+}$ (B) $\left[\mathrm{EP}^{2+}(\text { EDTA })\right]^{2-}$
(c) $\left[P t^{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{4}(R)\left[\mathrm{CO}^{+3}\left(\mathrm{NO}_{3}\right)_{6}\right]^{3-}$
Co^{3+}
\# Crystal Field stababization energy
(CASE)

Decrement in energy due to crystal fielel splitting

$$
\begin{aligned}
& \text { CFSE }(0) \rightarrow 0.4 \Lambda_{0} \times n_{1}-\Delta 0 \times 0.6 n_{2}-R \times P \cdot E \\
& x \Rightarrow \text { no. of extra pair } \\
& n_{2} \Rightarrow \text { no. of e in eg set } \\
& n_{1} \Rightarrow \text { no. of in } e^{-} \text {g set }
\end{aligned}
$$

$$
\begin{aligned}
\text { CFSE }_{(\text {Tetrahedral })}=-0.4 \Delta \Delta_{t} \times n_{1} & +0.0 \Delta t \\
& \times n_{2} \\
& -x \times p e
\end{aligned}
$$

K 2 no y extra pair
n_{2} no. of e^{-}set

$$
x_{1}=n_{0} \text { of } 0^{-} \text {int } t_{2} \text { set }
$$

(Q) which of the properties are similar in

$$
\left.\left[\begin{array}{c}
\left.\mathrm{Cr}^{3+} \mathrm{NH}_{3}\right)_{6}
\end{array}\right]^{3+}\left[\mathrm{Cr}^{3+} \mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}
$$

(1) no.g ofe-
(2) Hyb. of $C M \mathcal{~} d^{2} s p^{3}$
(3) genmetry octa
(A) Magretic moment ~ no.g Mmpiz
(s) Magnetic natue same
(6) G.E-SE x as expression same but value is not sance as Δ differs.
\# Application of CFT \rightarrow

1) Colow of complex
2) Stability of complex

sq planar complexes are colowiless generally
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ white CoCl_{4}^{2-} e light pink
intense blue d orbital
due
to spue

$$
\operatorname{gap}=\Delta(\epsilon)=h \nu=\frac{h c}{\nexists a b}
$$ d oncitals

$$
\lambda_{a b}\left[N_{i}(e)_{3}\right]^{2+}<\left(N_{i}\left(\mathrm{~N}_{3}\right)\right]^{2+}
$$

$$
\left\langle\mathrm{Ni}\left(\mathrm{~N}_{2} \mathrm{O}\right)_{6}\right]^{2+}
$$

| | $B \times R$ |
| :--- | :--- | :--- | :--- |

\rightarrow Anhydrous cusog is white in color while Hydrated CusO_{4} is blue colour compound loecacese in hyolrated form $\mathrm{H}_{2} \mathrm{O}$ act as Ligand ar or sitals ame splitfeel et auce at- of transition possible whille in absemee of cegrund all a ohsitenls we depenerated So d - d transition wot occurs.
\rightarrow Emerald (green) Ess a mineral perye $\left(\mathrm{Be}_{3} \mathrm{Al}_{2} \mathrm{sin}_{1} \mathrm{O}_{8}\right)$ it is colowed beor some of $1 \gamma^{\prime}+$ are present in place of A^{3} t at octenedrol sioes
\rightarrow Ruboy (Red) is an impure $\mathrm{Al}_{2} \mathrm{O}_{3}$ it contains imperity of cre $3 t$ wrich is reason of color.
\rightarrow d-d transition is not possible in
(1) al due to chosence gfe-s
(2) a ${ }^{10 \text { alssence of vacency. }}$
(3) als wRL symmetrial alisinbuted

क

$$
\left[\mathrm{Mn}_{n}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \rightarrow \text { light pink/colowiess }
$$

$$
\left[F_{6} F^{3-} \rightarrow\right. \text { colourless }
$$

$$
\left[E_{B}\left(\mathrm{H}_{2} 0\right)_{6}\right]^{3+} \Longrightarrow \text { leght yellow }
$$

$$
\left[\mathrm{Cr}\left(\mathrm{~N}_{2} \mathrm{O}\right)_{6}\right]^{3+} \longrightarrow \text { Violet }
$$

$\left[\operatorname{Cor}\left(n_{2},\right)_{S} x\right]^{4} \rightarrow$ Green

$$
x=\mathrm{SO}_{4}^{2-} / \mathrm{Cl}^{-} / \mathrm{NO}_{3}^{-}
$$

$$
\left[\mathrm{N}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \rightarrow \text { green }
$$

Colocor of Hydrate ion \rightarrow
Some no. $d^{0} \& d^{10} \rightarrow$ colowiless $\underset{e^{-s}}{\text { guppaired }} d^{\prime} \quad k \quad d^{9} \rightarrow$ Blue(exrept $T_{i p}^{3+} \rightarrow$ $e^{-s} d^{2}$ \& $d s \rightarrow$ Green
(ye Koiconcept nalii hai ye obserued wij

$$
\begin{aligned}
& \mathrm{Fe}^{2+} \mathrm{Ni}^{2+} \rightarrow \text { Green } \\
& \mathrm{Cr}^{2+}, \mathrm{r}^{2 t} \rightarrow \text { Rlue } \\
& \mathrm{Mn}^{2+}, \mathrm{Cb}^{2 t} \rightarrow \text { Light-pente } \\
& \left\{\mathrm{Fe}^{3+} \rightarrow\right. \text { light yellow } \\
& \mathrm{Cr}^{3+} \rightarrow \text { vidut }
\end{aligned}
$$

1) $L M C T$ (Ligand to Metal Charge Jransfer) example
2) ionie compourds
3) d-block oxyanions

$$
\begin{array}{r}
\left(\mathrm{MnO}_{4}^{-}, \mathrm{CrO}_{4}^{2-}, \mathrm{Cr}_{2} \mathrm{O}^{2-} \mathrm{F}\right) \\
\left.\mathrm{MnO}_{4}^{2-}\right)
\end{array}
$$

- oxy amions are formed by acidic oxicle \& a block metal formacidic oxide in $+5,6,+705$ (High 0.5)
(3) $d^{0}, d^{10}, d s$ wFe (If they are coloured) explain i) $\mathrm{VO}_{4}{ }^{3-} \mathrm{CrO}_{4}^{2-} \mathrm{CrO}_{4}^{-}$ $\xrightarrow{\text { colourless Kellow purple }}$ + vecharge \uparrow transition \uparrow Intensity dS WFL

2) $[F E F]^{3-}$

$$
\left[\mathrm{Fe}_{\mathrm{L}}(3 C N)_{6}\right]^{3-}
$$

Blood sed colourless colowr
(3)

$$
\left[\mathrm{Fe}(\mathrm{n}, \mathrm{O})_{6}\right]^{3+}(I) \quad\left[\mathrm{Fe}(4, O)_{5} \mathrm{OH}\right]^{2+}
$$

light gellow yellow lseown
$F e^{3+} d^{s} \omega F l \quad d-d$ transition CT~
polarizabality $\mathrm{H}_{2} \mathrm{O}<\mathrm{On}^{-}$
Intem
$\mathrm{I}<\pi$
Intensity $I<\pi$
MLCT \rightarrow (Metal Ligand to charge
Melal is in low

$$
0 \cdot s(-1,-2,0,+1)
$$

\Rightarrow ligand good accepbor $\left(\pi^{*}\right)$

$$
\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{CSH}_{5}, \mathrm{C}_{3}{ }^{4}, \mathrm{NO}, \mathrm{NO}^{+}, \mathrm{CO}
$$

example

$$
\begin{aligned}
& \left(\mathrm{Fe}^{+}\left(\mathrm{H}_{2} \mathrm{O}_{5} \mathrm{NO}^{+}\right)^{2+}\right. \text { unpaided er procal } \\
& \mathrm{Fe}^{+1} \mathrm{NO}^{+1} \\
& \mathrm{Fe}^{2 t} \mathrm{NO}^{+}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\mathrm{Fe}\left(\mathrm{n}_{2} \mathrm{O}_{\mathrm{S}} \mathrm{NO}\right] \xrightarrow{\text { transition }}{ }^{\mathrm{NO}} \mathrm{Fe}_{\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{S}} \mathrm{NO}\right]}^{2 t}\right.} \\
& \text { GuS } \\
& \text { ES } \\
& \text { BN } \\
& \mathrm{Fe}^{+} \mathrm{CNO}^{+}
\end{aligned}
$$

Sodium Nitro preside

$$
\mathrm{Nq}_{2}\left[\mathrm{Fe}^{2 t}\left(\mathrm{CN}_{3} \mathrm{NO}_{0}\right]\right.
$$

diamagnetic
CTX $\mathrm{Fe}^{+2} \mathrm{Na}^{+} \mathrm{x}$ colourless d^{-d} transition x ligand CN-

Splitting A

Metal to Metal Charge transfer (M MCT) when two of-block metals present in complex (AMLX]) at olifferent potent -al

$$
\begin{aligned}
& \left.\xrightarrow{\mathrm{FeCl}_{2}} \mathrm{Fe}_{2}[\mathrm{FeCCN})_{6}\right] \\
& \text { white ppm (} 2,2 \text { complex) } \\
& K_{4}\left[F e C(N)_{6}\right] \\
& \frac{\text { II }}{\mathrm{Fe}_{4}}\left[\mathrm{Fe}\left(\mathrm{CN}_{6}\right]_{3}\right]_{3} \\
& \text { (} 3,2 \text { complex) } \\
& \text { Blue ppm } \\
& \text { russian }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Fe}-\mathrm{CEN}=\mathrm{Fe}^{2+} \\
& \text { MMCT } X \\
& \mathrm{Fe}^{3 t}-\mathrm{N} \leq \mathrm{C}-\mathrm{Fe}^{2 t} \\
& \text { MMCTV } \mathrm{FeCl}_{2} \mathrm{Fe}^{2+} \mathrm{CEN} \\
& \text { MMCT } F^{2 \pi} \\
& \left.\mathrm{Fe}_{3}[\mathrm{FeCCN})_{6}\right]_{2} \\
& k_{3} F d\left(N_{b}\right) \quad 2,3 \text { complex } \\
& \text { Beueppt } \\
& \text { turns bulls } \\
& \mathrm{FeCl}_{3} \\
& \text { eye } \\
& \text { Fe[Fe(CN)] } \\
& \text { Red colouration } \\
& \text { (} 3,3 \text { complex) (polarization) } \\
& \mathrm{Fe}^{3+}-\mathrm{CEN} \text { - } \mathrm{Fe}^{3+} \\
& \text { PPA MMCTX } \\
& \xrightarrow{2 n^{2}+} 2 n_{2}\left[F e(C N)_{6}\right] 2 n^{2+} \\
& \text { white } \\
& \mathrm{K}_{4} \mathrm{FE}(\mathrm{CN})_{6} \\
& \text { Zeff } 2 \mathrm{M} \\
& d^{10} \\
& \text {, Aar } a \text { Pp(CN) } D \sqrt{1}
\end{aligned}
$$

brown

$$
\mathrm{Pp} \mathrm{Cu}^{2}+(\mathrm{lg})>\mathrm{Fe}^{2+} \mathrm{d}^{6}
$$

Cal^{2+}

$$
\Rightarrow \mathrm{Cd}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \downarrow
$$

Bluish white ppt
$\mathrm{Ag}+$

$$
\begin{aligned}
& \text { Green } \downarrow \mathrm{Cl}^{2+} \underset{\rightarrow}{-} \equiv C-\mathrm{Fe}^{3+}
\end{aligned}
$$

MMCT

Priority ordes of same CMI
Sirength \geq chelation $>$ sirength of liganal

CN $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-}$en $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{NH}_{3}$
(1) (2)
(2)
(5) (4)

Bidentate ligancls dlevays present II at is as at trans Ange shrain more
Q) Arrange following in correct order of Stalkility \rightarrow

$$
\begin{aligned}
& \Rightarrow \mathrm{PtCl}_{4}^{2-}>\mathrm{PdCl}_{4}^{2-}>\mathrm{NiCl}_{4}^{2-} \\
& \Rightarrow\left[\mathrm{Ir}^{3+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\right]^{3+}\left[R U_{n}^{3+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\left(\mathrm{CO}^{3+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\right]^{3+}\right. \\
& \text { g) }\left[\operatorname{Ir} \mathrm{F}_{6}\right]^{3-}>\mathrm{RhF}_{6}{ }^{3-}>\mathrm{CoF}_{6}^{3-}
\end{aligned}
$$

$$
A>B>C
$$

$$
\begin{aligned}
& \Rightarrow N_{i}^{2 t}(d m)_{2},\left[N_{i}^{2+}(e n)_{2}\right]^{2+}\left[N_{i}^{2+}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \\
& \Rightarrow[\operatorname{coc}(E d T A)]>\left[\cos ^{+}(2 n)_{3}\right]^{3+}\left[C^{+}\left(\ln _{2} 2 N_{\frac{3}{2}}^{3}\right)\right. \\
& \Rightarrow \quad \mathrm{Cu}^{2+}(\text { trlen })^{2+}>\left[\mathrm{Cu}^{2+}(2 n)_{2}\right]^{2+}>\left[\mathrm{Cu}^{2+}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2 t^{2}} \\
& \Rightarrow\left[0^{3+}(\text { alact })\right]>\left[\mathrm{co}^{3+}(\mathrm{ox})_{3}\right]^{3-} \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { IMPORTANT POINTS }
\end{aligned}
$$

1) $\mathrm{Pt}^{2+}, \mathrm{Pd}^{2+}, \mathrm{Au}^{3+}, \mathrm{Ag}^{3+} \underset{d^{3} \mathrm{ap}^{2}}{\longrightarrow}$ aluays diamagnetic
2) $\mathrm{P} t^{4+}, \mathrm{Pd}^{2+} d^{2} s p^{3}$ diamag. always.
(3) Iransference of e
when highest energy el orbsital contain single e in presence of SFL

$$
C N=6 \quad d^{7} \quad S F l\left(\cos ^{2+}\right.
$$

$\underset{H}{ } A$ is spontanewas in comparis st -on to 2 as b is non spont bco2 remonal of e^{-}is e asy from 4d onbitait in comparisong 4 a orsiteil.
oMB organ metallic
compouvels
Metal $+C / B / 3 i$
Covalent/Coordinatre
ofonor
π donor

$$
\mathrm{CH}_{3}-\mathrm{A}=\mathrm{CH}_{3} \quad \mathrm{H}_{2} \mathrm{~B}=\mathrm{Al}-\mathrm{BH}_{2}
$$

$\Rightarrow C O$ is not a good donar but it is a good acceptor so it form complex with metals having low os. $(-2,-1,0,1)$
generally all d-blocle metals form metal carbonyls

SORER

1) Ionization
2) Greonutri col
3) Hyobrate/sohate
4) optical
5) lingkage
6) eo-orelination
7) Coordination position
8) ligand isomerism
9) poly merisation

$$
\text { IONIZATION ISOMERISM } \rightarrow
$$

Complexes having same molecular formula but furnishes different type of ions in ap. medium in such complexes counter ion can act as ligand and ligand act as Cen.

$$
\lg \Rightarrow\left[M L_{X}\right]_{A} \rightleftharpoons\left[M L_{x+1} A\right] L
$$

Ionisation isomers can be ristingumen -d by

1) Qualitative Analysis (precipitation
2) Conductivity Measurement (conductivity
\& charge $\alpha 1$) α charge $\alpha 1$, \& charge dominates oversize. Hydrate size
 pet.

Ielentify complexes $A \& B$.

$$
\begin{aligned}
& B=\left[\left(r \mathrm{SNH}_{3} \mathrm{Br}^{r}\right] \mathrm{SO}_{4}\right. \\
& \mathrm{A}=(\mathrm{CrSNH}
\end{aligned}
$$

\# Hydrate/Solvate Isomerism \rightarrow
In complex compound $\mathrm{H}_{2} \mathrm{O}$ molecule e act as ligand inside the coordination sphere and areas crystalline wabere Outside the coorelination sphere in Et Ionic Lattice

Complexes having same noolccilar formula but diff. no. of water molecules inside or cuticle coorelivetic Then sphere are hydrate is mere of each other.

$$
\text { hydrate } \longrightarrow\left[M\left(n_{2}, 0\right)_{6}\right] B r_{2}
$$

is meres.
crystalline

$$
\left[M\left(\mathrm{H}_{2} \mathrm{O}\right)_{S} \mathrm{Br}\right]^{+} \mathrm{Br} \cdot \mathrm{H}_{2} \mathrm{O}
$$

$$
\left[M\left(n_{2} \mathrm{O}^{\prime}\right)+3 \times 2\right]^{\infty} 2 \mathrm{H}_{2} \mathrm{O}
$$

Hyolrate isomers cam be distinguished by

1) Quantitative Analysis (Difference in
moles op pet) moles opt?
2) Conductivity measurement
3) By weight toss measurement or
(Q) $\mathrm{Cr}_{\mathrm{C}} \cdot 6 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Cl}_{3}$ exist in 3 isomeriform $A B C$ concluetivity of $A>B C C$ (i) find A, B, C, (ii) find order of useighlitoss of $A B C$ or $\xrightarrow[r]{ }$ wiHh conc. $H_{2} \mathrm{SO}_{4}$ (iii) find moles of Agel precipitateo when each mole of $A B C$ seperately ruacts ulith exchss of AgNO_{3}.
(i)

$$
\begin{aligned}
& A=\left(\mathrm{O}-\mathrm{H}_{2} \mathrm{O}\right)\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3} \\
& B=\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{S}} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \\
& C 2
\end{aligned}
$$

 (iii)

No wt loss

$$
\left.\frac{1 \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{H}_{2} \mathrm{O}}\right\} \text { loss }
$$

$$
\# \text { LINKAGE ISOMERISM } \rightarrow
$$

Ihis fype of isomerism acises when complex contein ambidentate legand beeause Anlsidentate ifgand can be coordinated with defferent-difperent donor sites with CMI

$$
\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{CN})\right]_{3}^{+1} \rightarrow\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{NC})\right]
$$

domor $\mathrm{CN}^{-} \mathrm{NCO}^{-} \mathrm{SCN}^{-} \mathrm{NO}_{2}^{-} \mathrm{NOS}^{-} \mathrm{SO}_{3}^{2-} \mathrm{S}_{2} \mathrm{O}_{3}^{2-\mathrm{C}}$

(Q) Which of themean show linkage isomerisis
(© $\left[\mathrm{FO}(\mathrm{SCN})_{6}\right]^{3}$
(2) $\left[\mathrm{P} t(\mathrm{CN})_{4}\right]^{2-}$
(3) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{3}\right] \rightarrow{ }^{-} \rightarrow 1$
(4) $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right]^{2+}$
(Q) Find possible linkage is oners of

1) $P t(C N)_{4}^{2-}$

C	N
4	0
3	1
2	2
1	3

$A n=5$
(2) $\left[\mathrm{Pt}\left(\mathrm{NO}_{2}\right)_{2}\left(\mathrm{NOS}_{2}\right]^{2-}\right.$

	NO	
NO_{2}	1	001
20	1	1
21	0	1
02	200	
	002	
	020	

Q Hybridization of which complex \& its homoteptic linkage isomer is same.
(A) $\left[P t(C N)_{4}\right]^{2-S}(B)\left[P t(S C N)_{6}\right]^{2-}$
(C) $\left[\mathrm{Fe}(\mathrm{NCO})_{6}\right]^{3-(D)}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3}$

COORDINATION ISOMERISM \rightarrow
This type of isomeric arises in compound hawing complex cation as well as complex Anion.

Complexes having same molecular formula but ligands or CMI present in diff-dife cooveliation sombre

(1) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{Au}\left(\mathrm{CN}_{2}\right)_{2}\right]$ Jetentical
(2) $\begin{aligned} & {\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{Ag}\left(\mathrm{CN}_{2}\right]\right.} \\ & {\left[\mathrm{Ag}\left(\mathrm{N}_{3}\right)(\mathrm{N})\right]\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)(\mathrm{N})\right]} \\ & {\left[\mathrm{Ag} \operatorname{CH}\left(\mathrm{CN}_{2}\right]\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]\right.}\end{aligned}$
(3) $\left[\begin{array}{l}+20+2+2+2-4-2 \\ \left.\left[\mathrm{~L}-\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PFCl}_{4}\right]^{2}\end{array}\right.$

Ielditical

$$
\left[P t\left(\mathrm{H}_{3}\right)_{2} \mathrm{Cl}_{2}\right]\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]
$$

- $\left.\mathrm{PPt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}\right]\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]$
$[\mathrm{PtCl} 4]\left[\mathrm{Pr}\left(\mathrm{NH}_{3}\right)_{4}\right]$
(4) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PaCl}_{4}\right]=4 \mathrm{CJ}$
(5) $\left[\operatorname{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{CrCl}_{6}\right]=3$
(6) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{CoF} \mathrm{F}_{6}\right]=b$

HW

$$
\begin{aligned}
& {\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{Pt}(\mathrm{SCN})_{2} \mathrm{Cl}_{4}\right]} \\
& {\left[P+(e n)_{2}\right]\left[P+C_{4}\right]} \\
& {\left[\mathrm{Pt}(e n) \mathrm{Cl}_{2}\right]^{0}\left[\mathrm{Pt}(e n) \mathrm{Cl}_{2}\right]^{0}} \\
& {\left[P+C_{4}\right]\left[P t(l n)_{2}\right]}
\end{aligned}
$$

mathle them

$$
\begin{aligned}
& \text { 1) }\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{CrF}_{6}\right] \\
& \text { \& } \\
& {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{S} \mathrm{~F}\right]\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{F}_{5}\right]}
\end{aligned}
$$

2) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]_{\&}\left[\mathrm{coF}_{6}^{\prime}\right]\right.$ (B) Electrolysis

$$
\left[\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{CrF}_{6}\right]
$$

$$
\begin{aligned}
& \mathrm{PH}\left(\mathrm{Nr}_{3}{ }_{3}-\left[\begin{array}{ll}
\mathrm{Cl} & \rightarrow\left[\mathrm{P}+\left(\mathrm{NH}_{3}\right) \mathrm{SCN}_{2}\right)_{U_{3}} \\
\rightarrow \text { SCN } & \rightarrow\left[\mathrm{PH}_{\left(\mathrm{NH}_{3}\right)}\right.
\end{array}\right.\right. \\
& \xrightarrow{x+x} \\
& \text { poges }
\end{aligned}
$$

$$
\text { LIGAND } 130 \text { MER18M } \rightarrow
$$

Jhis type of is omerism when eiganf cam show positionisomerism e Complexes hanine some molecular e formula containing ligances whiche arepnsition isonerots of esere other are liganel isomers aft eachother

\# Coordination Position isonverism \rightarrow
This type of isomerion arises in poly nevelear complexes poly nesclear complexes having same molecerlar formula lat Metal Ion is coordinated diff-diff legends are corrdination position isomere of
lach orker. lach orher.

$$
\begin{aligned}
& I-I I \rightarrow C p \quad I-I \quad \rightarrow C p \\
& I-I I \rightarrow C P I I-I V \rightarrow C p
\end{aligned}
$$

HW \square

$$
\text { (1) }\left[P t\left(\mathrm{NH}_{3}\right)_{4}\right]\left[P t(\mathrm{SeN})_{\alpha} \mathrm{Cl}_{4}\right]
$$

(7)
(8)

\# Polymerization Isomerism
Complexes having different Molecular formula batt same empirical formula are polymers isonvers of eachother It is not a true isomerism.

1) $\left[\mathrm{PH} \mathrm{NH}_{3} \mathrm{Cl}\right.$
2) $\left[\mathrm{P},\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ 1:2:2
3) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right][\mathrm{Pt} 2: 4: 4$ $\left.\mathrm{Cl}_{4}\right]$
4) $\left.\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right][\mathrm{PtU} 4] 3: 6: 6$
5) $\left[\mathrm{PH}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}\right]_{2} 3: 6: 6$
$1-2,2-3,1-3,1-4,2-4$ polymer isomer
3-4 coordination isomer

Stereo/space isomerism \rightarrow
geometrical \rightarrow Diff distance, diff type of bond atugle
Optical \rightarrow P多
let:-
$C M I=M$
$a, b, c, d, e, f \cdots=$ Monodentate ligand
$A A, B B, C C$
(en, dipy, $D x$, phen, acac)
$A B, A C, B C=$ bidentate (unsymmetrical)
(vey, beac, dmgs)
$C N=2$ lineas (planoor)

OI in tetrahedral \rightarrow
(1) Ma_{4}

(2) $M a_{3} b$

Pos OIX
(3) $M a_{2} b_{2}$

DOSV

$$
0 I x
$$

(4) $M a_{2} b c$

PosNOIX
(5) Maboed

(6) $M(A A)_{2} \operatorname{POS} \sim O I_{x}$

(4) $M(A A)(B C)$
(8) $M(A B)_{2}$
$\operatorname{Pas} x$ OIV
Symmety wrt domar atoms but unsymm erical alul to atones of cleang.
$19(g) \quad M(A B) C_{2}$

(11) $M(A B)(C D)$

GI in square planar \rightarrow
(1) Ma_{4}
(2) $M_{a_{3} b}$

$$
a_{a}^{a} \int_{9}^{a} \cos x
$$

(3)

$$
\begin{aligned}
& \operatorname{ma}_{2} b_{2} \\
& (a, b, b a, b) \\
& a \times b+r a m s \\
& b<a<b \\
& a<b
\end{aligned}
$$

(s) Mabocd

$$
G I=3
$$

cis

(6)

2 cis +1 trens.

(7) $M(A A) b c$

(8) $M(A A)_{2}$
-2

(10) $M(A B) C d$

EXAMS R厅AD

STEREO LSOMERISM in $C N=6$
POS

EXAMSROACLIAL
EXAMSROADOFFICIAL

$M a_{2}$ bcde

$(a, a)+$ rams

जI26 $0^{\circ}=6$
Tobil GIE 9

$$
O I=3
$$

$M(A A) b c d e$

Total GI=6

$$
O I=0
$$

$0 A=12$
0 isomer z 12
Stereo isoner $=12$
$M(A B) b c d e$

Total $r I=12$
$O A=24$
Aalsedef

$M a_{2} b_{2} c d$

$$
(a, a)+r a n s
$$

(a, a) is

$M(A A) b_{2} C d$
(b, b) is (b, b) Arams

$$
\begin{aligned}
& \text { VI=A } \\
& O A=4 \\
& O I=0 \mathrm{~m} 26 \\
& S I=6
\end{aligned}
$$

$$
0 I n=2
$$

$M(A B) c_{2} d e$

$$
(c-c) \text { is }
$$

$(a-a)$ ras

$M A A b_{2} C_{2} \quad b$

$$
G I=3
$$

$$
O I=2
$$

scune

When 3 sane type of monodentate peesent in $C N=6$ only one cis isomer pocsible

$$
M_{3} b_{2} c(b, b) \text { is }
$$

$\operatorname{GI}=3$

$$
M a_{3} b_{3} \text { face-mer }
$$

Meridonial

Magb
NoUN

Whan two bidentated licund present in coordination no. 6 cuis isomer is aluachs ontried μ

(col) cis
\qquad

3 trans

Application of Coordination (ompourdst
(1) Haemoglobin \rightarrow Hae means ion
\& globin uprotin
It iscomplex if iom.
(2) vitamin B_{12} is conuplex of cobalt.
(3) Chloroplyjl is complex of Magnasium
(4) In treatment of lead poisthoing EDTA ${ }^{4-}$ is used EDTA is hexaren - tate ligand which form stable complex with $\mathrm{Pb}^{2}+\mathrm{so}$, identity Pb^{2+} looses its CaLcium EDTA is used instead g soolium EDTA bcoz increment in soolicum ionc. in body aduersele. affect cell membsanes
(8) Cisplatin Cis $^{2}\left[P+\left(\mathrm{NH}_{3}\right) c_{2}\right]$ is used to control alvonith of tampur aret
(6) Wilkinson Catalyst $\left[\bar{R} n\left(\mathrm{Pen}_{3}\right)_{3} \mathrm{Cl}\right]$ is usecl in mydregemation of
(7) EDTA ${ }^{4}$ is used to estimate water e hardness, harclness of water prode - ued due to presence of calcium E K Magruesiun \&DTA ${ }^{4}$ - is also e cusec in selective estimation of $\mathrm{Ca}^{2}+$ becaz K_{F} of

$$
C_{a}-\in D T A>M g-6 D T A
$$

(8) In B lack le arlite plostograph to distolue undecomposed AgBr Hypo soln is used

(c) Relown ling couplex formation ? FeSO_{4} (aq) $+\mathrm{NO} \Rightarrow\left[\mathrm{Fe}^{+1}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{s}} \mathrm{NO}^{+1}\right]_{\mathrm{e}} \mathrm{e}$ Brown colow ef
(15) $\mathrm{Fe}^{3+} \mathrm{CH}_{3} \mathrm{COO}^{-1\left(\mathrm{C}_{2} \mathrm{O}_{4}^{2} / \mathrm{SCN} \rightarrow\right.} \rightarrow$

Red colouratione। colourdue to C.T
(E) Strong leuis base form complex with strong hewis acid weak lewis wose form complex with wean lewis acid
complex formation fendewcy
dbloet d block $>$ pblow axcept
stzerto
e.g mixtere of d bloek \& plolock cations excess
by a block Cations p block \& H_{l} dowat
(v)Fl
excesskI
Comple x porsertionby pblock \& Hg uot-by
excess alblocN
$\xrightarrow{\mathrm{NH}_{3} / \mathrm{NH}_{\mathrm{g}} \mathrm{OH}}$
Complex fommation by at block exeept M, ke 1 Hg mot by pblote
Fe complexes are mose stalale with odonor in comparisson of N^{\prime} donor (exception in shabslity orclers)
(10) In Metallurgy
(1) Mac Arthun forest cyanicle process (for Ag \& Au)
(5) mond's process (in purification of Naf
(0) ExamsRoad

